【LLaMA 3实战:多智能体】17、LLaMA 3多智能体协作全攻略:从架构设计到权限控制与实战应用

在这里插入图片描述

一、多智能体系统架构与核心组件

(一)分层协作架构设计

LLaMA 3驱动的多智能体系统采用“协调中枢+专业智能体”的分层架构,实现跨领域任务的高效分解与协作:

智能体内部结构
Message Protocol
Message Protocol
专用工具集
LLaMA 3模型
独立记忆库
角色模块
协调中枢
领域专家智能体
执行智能体
验证智能体

(二)智能体核心组件实现

1. 角色化智能体定义
class LlamaAgent:
    def __init__(self, agent_id, role, expertise, llm_size="8B"):
        self.agent_id = agent_id
        self.role = role          # 专家/执行者/协调者
        self.expertise = expertise  # 领域专长(如finance/research)
        self.llm = self._load_llm(llm_size)
        self.memory = VectorStoreIndex()  # 独立记忆系统
        self.tools = self._load_domain_tools(expertise)
        self.permissions = self._initialize_permissions(role)
    
    def _load_llm(self, size):
        model_map = {
   
            "8B": "meta-llama/Meta-Llama-3-8B-Instruct",
            "70B": "meta-llama/Meta-Llama-3-70B-Instruct"
        }
        return load_model(model_map[size])
    
    def _load_domain_tools(self, expertise):
        # 按领域加载专用工具集
        tool_registry = {
   
            "finance": [BloombergAPI(), FinancialAnalyzer()],
            "research": [ArxivSearch(), PaperSummarizer()],
            "engineering": [CADProcessor(), SimulationTool()]
        }
        return tool_registry.get(expertise, [])
    
    def _initialize_permissions(self, role):
        # 基于角色的权限初始化(RBAC模型)
        permission_map = {
   
            "finance_agent": ["access_financial_db", "execute_trade"],
            "research_agent": ["access_academic_db", "summarize_paper"],
            "admin_agent": ["all_permissions"]
        }
        return permission_map.get(role, [])
    
    def check_permission(self, resource):
        # 权限检查逻辑
        return resource in self.permissions or "all_permissions" in self.permissions
2. 跨智能体通信协议
class AgentCommunication:
    def __init__(self, agents):
        self.agents = {
   agent.agent_id: agent for agent in agents}
        self.message_queue = asyncio.Queue()
        self.consensus_protocol = RAFTProtocol(agents)
    
    async def send_message(self, sender_id, receiver_id, content, msg_type):
        """发送结构化消息至指定智能体"""
        message = {
   
            "sender": sender_id,
            "receiver": receiver_id,
            "content": content,
            "type": msg_type  # QUERY/RESULT/COORDINATION
        }
        await self.message_queue.put(message)
        return await self._wait_for_ack(me
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值