一、多智能体系统架构与核心组件
(一)分层协作架构设计
LLaMA 3驱动的多智能体系统采用“协调中枢+专业智能体”的分层架构,实现跨领域任务的高效分解与协作:
(二)智能体核心组件实现
1. 角色化智能体定义
class LlamaAgent:
def __init__(self, agent_id, role, expertise, llm_size="8B"):
self.agent_id = agent_id
self.role = role # 专家/执行者/协调者
self.expertise = expertise # 领域专长(如finance/research)
self.llm = self._load_llm(llm_size)
self.memory = VectorStoreIndex() # 独立记忆系统
self.tools = self._load_domain_tools(expertise)
self.permissions = self._initialize_permissions(role)
def _load_llm(self, size):
model_map = {
"8B": "meta-llama/Meta-Llama-3-8B-Instruct",
"70B": "meta-llama/Meta-Llama-3-70B-Instruct"
}
return load_model(model_map[size])
def _load_domain_tools(self, expertise):
# 按领域加载专用工具集
tool_registry = {
"finance": [BloombergAPI(), FinancialAnalyzer()],
"research": [ArxivSearch(), PaperSummarizer()],
"engineering": [CADProcessor(), SimulationTool()]
}
return tool_registry.get(expertise, [])
def _initialize_permissions(self, role):
# 基于角色的权限初始化(RBAC模型)
permission_map = {
"finance_agent": ["access_financial_db", "execute_trade"],
"research_agent": ["access_academic_db", "summarize_paper"],
"admin_agent": ["all_permissions"]
}
return permission_map.get(role, [])
def check_permission(self, resource):
# 权限检查逻辑
return resource in self.permissions or "all_permissions" in self.permissions
2. 跨智能体通信协议
class AgentCommunication:
def __init__(self, agents):
self.agents = {
agent.agent_id: agent for agent in agents}
self.message_queue = asyncio.Queue()
self.consensus_protocol = RAFTProtocol(agents)
async def send_message(self, sender_id, receiver_id, content, msg_type):
"""发送结构化消息至指定智能体"""
message = {
"sender": sender_id,
"receiver": receiver_id,
"content": content,
"type": msg_type # QUERY/RESULT/COORDINATION
}
await self.message_queue.put(message)
return await self._wait_for_ack(me