FastAPI定时任务APScheduler集成

本文介绍了如何在FastAPI中集成APScheduler实现定时任务,包括使用AsyncIOScheduler、RedisJobStore和ThreadPoolExecutor。在实际应用中遇到了进程重复执行任务和线上任务不执行的问题。解决方案是改为单worker部署并使用ProcessPoolExecutor替代ThreadPoolExecutor来确保任务正常执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FastAPI定时任务APScheduler集成

在这里插入图片描述

一、前言

APScheduler定时任务传送门

二、在FastAPI中集成aAPScheduler

  • 使用FastAPI启动前后处理程序进行启动任务

2.1 定时任务配置

  • 使用AsyncIOScheduler调度器
  • 使用Redis存储器
  • 使用ThreadPoolExecutor执行器
from datetime import datetime

from apscheduler.schedulers.asyncio import AsyncIOScheduler
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.executors.pool import ThreadPoolExecutor

REDIS_DB = {
    "db": 1,
    "host": "127.0.0.1"
}

def func(name):
    now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print(now + f" Hello world, {name}")

interval_task = {
    # 配置存储器
    "jobstores": {
        # 使用Redis进行存储
        'default': RedisJobStore(**REDIS_DB)
    },
    # 配置执行器
	"executors": {
	    # 使用进程池进行调度,最大进程数是10个
	    'default': ProcessPoolExecutor(10)
	},
    # 创建job时的默认参数
    "job_defaults": {
        'coalesce': False,  # 是否合并执行
        'max_instances': 3,  # 最大实例数
    }

}
scheduler = AsyncIOScheduler(**interval_task)
# 添加一个定时任务
scheduler.add_job(func, 'interval', seconds=3, args=["desire"], id="desire_job", replace_existing=True)

2.2 启动FastAPI之前启动定时任务

from fastapi import FastAPI

# 导入定时任务配置
from scheduler import scheduler

app = FastAPI()

@app.on_event("startup")
async def start_event():
    scheduler.start()
    print("定时任务启动成功")

@app.get("/list")
async def jobs():
    jobs = scheduler.get_jobs()

    return [job.id for job in jobs]

2.3 挂载到app上

1)创建注册定时器的方法
def register_scheduler(app: FastAPI):
    @app.on_event("startup")
    async def start_event():
        scheduler.start()
        print("定时任务启动成功")

2)挂载到app上
from fastapi import FastAPI

app = FastAPI()
# 进行挂载
register_scheduler(app)

三、应用中遇到的问题

遇到的问题1:

使用gunicorn部署项目时,进程数设置的是当前服务器最大workers = multiprocessing.cpu_count() * 2 + 1,导致一个定时任务会在每个worker进行执行,造成了定时任务重复执行问题

解决办法:

不设置多worker工作,目前单worker工作对项目运行也没有不好的地方

遇到的问题2:

在本地执行定时任务是可以的,但是一上线就发现定时任务不执行了,回来经过查阅资料,也没找到解决办法,一次偶尔机会,发现执行器是使用的线程池进行调度的。

# 配置执行器
"executors": {
    # 使用线程池进行调度,最大线程数是20个
    'default': ThreadPoolExecutor(20)
},

可能就是在项目构建启动的时候,定时器的线程没有启动起来导致的。

解决办法:

把执行器改成了使用进程池进行调度,问题就解决了。

# 配置执行器
"executors": {
    # 使用进程池进行调度,最大进程数是10个
    'default': ProcessPoolExecutor(10)
},
### 如何在 FastAPI 中使用 APScheduler 实现定时任务调度 #### 安装依赖库 为了使 FastAPI 能够与 APScheduler 配合工作,需安装必要的 Python 库。可以通过 pip 来完成这些包的安装。 ```bash pip install fastapi uvicorn apscheduler ``` #### 初始化 FastAPIAPScheduler 创建一个新的 FastAPI 应用实例并初始化 APScheduler 的调度器对象,在应用启动时开启调度服务[^1]。 ```python from fastapi import FastAPI from apscheduler.schedulers.background import BackgroundScheduler import atexit app = FastAPI() # 创建后台调度器 scheduler = BackgroundScheduler() scheduler.start() # 注册退出事件来优雅关闭调度器 atexit.register(lambda: scheduler.shutdown()) ``` #### 添加定时任务函数 定义希望定期执行的任务逻辑,并将其注册到调度器中。这里展示了一个简单的例子,该任务每五秒打印一次消息至控制台。 ```python def my_scheduled_task(): print("This task runs every five seconds.") # 使用 date, interval 或 cron 类型触发器添加作业 scheduler.add_job(my_scheduled_task, 'interval', seconds=5) ``` #### 结合路径操作集成进 API 接口 如果想要通过 HTTP 请求触发展示当前已安排的所有任务列表,则可以像下面这样编写路由处理程序: ```python @app.get("/jobs/") async def read_jobs(): jobs = [{"id": job.id, "name": str(job)} for job in scheduler.get_jobs()] return {"jobs": jobs} ``` 以上就是如何在 FastAPI 中使用 APScheduler 进行基本的定时任务设置的方法介绍。此方法允许开发者轻松地将计划好的后台进程加入到基于 FastAPI 构建的服务当中去[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值