基于CAT的VBM和SBM计算学习笔记(一)VBM

前言

   基于体素的形态学方法(voxel-based morphometry, VBM),是大脑结构研究中最常见的指标。我刚开始学习fMRI数据处理时主要都聚焦在功能差异的研究,但接触了一批受外伤的被试,对其脑结构的改变产生兴趣,遂学习之。

  VBM用T1计算,稳定性强;覆盖全脑,全面性强;而且其计算软件发展已经很成熟,可以自动化完成。大概一天时间就可学会。

  (ps:VBM等指标有很多种计算方法,我选择用DPABI来生成和校准T1,因为批量化处理迅速;选择cat12来做分割因为精细化程度高,本笔记仅供参考。)

一、环境配置

系统:Windows 11
软件运行平台:Matlab2022a
所需工具包:

  1. SPM12(下载安装教程
  2. DPABI(​​​​​​下载安装教程
  3. cat12(下载安装教程)(ps:请记得将cat12文件夹移动到spm的toobox路径里)
     

二、处理总流程

目录

1.用DPABI预处理T1

1.1 生成T1图像

1.2 校正T1原点(Reorient)

2.用CAT进行分割(Segment)

3.用spm确认分割质量(Qauilty Control)

4.用spm进行平滑(Smooth)


图1 从原始T1得到可以计算灰质体素图像的全过程

三、处理步骤

1.用DPABI预处理T1

图2 用DPABI进行T1预处理过程

1.1 生成T1图像

  将原始的T1图像由dcm转化为.nii格式,以备后续查看和操作。参考图2用DPABI自带的DICOM to NIFTI功能进行转化即可。

1.2 校正T1原点(Reorient)

  

图3 校准T1原点的目标,过程,与输出结果。

前联合 (Anterior Commissure, AC):连接两侧颞叶的前部和下部区域;后联合(Posterior Commissure, PC):位于大脑中部偏后,靠近中脑顶盖。两者都是重要的大脑白质纤维结构。

勾选Reorient T1*,DPABI会在处理过程中自动跳出手动校准原点的UI页面。进行操作后点击Reorient Images确认。

AC校正简单来说就是:手动设置大脑3D笛卡尔坐标系的原点。而原点位置应该在前联合(AC)处,并与后联合(PC)形成直线的连线。其具体原理和方法参考(AC校准)。

用DPABI处理完后,我们得到了原点标准化的T1图像,可以进行后续处理了。

2.用CAT进行分割(Segment)

图4 用cat进行自动化分割、配准、调和的步骤

从spm的Toolbox里启动cat12,选中cat12-Preprocessing-Segment,开始设置自动化分割、配置、调和的具体参数。cat12作为专业的VBM计算软件,提供非常多精细化的处理。

大多数的步骤都可以按照默认设置。我们主要关注是否需要输出SBM结果,如果不需要可以选择No,这样可以节省运算时间。其次关注是否需要用ROImask提取感兴趣区。(这一步我每次都报错,还在研究中。)

3.用spm确认分割质量(Qauilty Control)

图5 cat分割完成后的图像质量控制pdf

正常的IQR>75%即可;正常的图像计算时间在35-45min内。

图像质量确认应该分为三步。(质量确认官方教程

  • 第一:查看输出的pdf,看IQR(图像质量参数)是否>75%。
  • 第二:通过逐一切片的检查确认标准化没有问题(看是否有某一脑结构的缺漏)。
  • 第三:cat12自带的相关性分析。

(ps.我在用cat12软件做质量控制时,永远都在报错,所以可以用spm check reg替代。)

4.用spm进行平滑(Smooth)

在spm-Spatial Preprocessing-Smooth里选择输出的文件里mvp1开头的文件,进行Smooth处理。

图6 用spm进行平滑(Smooth)的步骤

四、总结

  回顾一下,本笔记介绍了从T1原始图像到灰质体素图像的全过程。

  在先使用DPABI软件预处理好T1图像后,用Cat的Segment自动化功能得到分割后的灰质体素图像,再用spm进行Smooth。那么就得到了可以使用的灰质体积图像,后续再通过TIV得到全脑体积,然后进行组间比较、临床相关等统计分析即可。

<think>好的,我需要帮助用户了解Cat12 VBM分割前后的具体处理流程。首先,用户提供的引用内容提到了CAT12SPM12在MRI图像预处理中的应用,包括AC校正、分割、去颅骨、配准到MNI空间、调制输出文件格式等步骤。用户还提到了参考的博客文章,说明他们可能已经看过些资料,但需要更详细的流程说明。 首先,我应该按照系统级指令的要求,使用中文回答,结构清晰,分步骤说明。需要确保所有数学表达式正确使用$...$或$$...$$格式,但根据用户的问题,可能涉及的数学内容不多,不过如果有的话要注意。例如,可能在配准或调制步骤中涉及空间变换的公式,比如仿射变换或非线性变换,这时需要用LaTeX正确表示。 接下来,处理流程般包括数据准备、预处理步骤(如AC校正、分割、去颅骨)、空间标准化、调制、平滑统计分析。需要参考用户提供的引用内容,特别是引用[1]、[2]、[3],其中引用[1]详细列出了预处理步骤,引用[2][3]提到环境配置具体处理流程。 需要确认每个步骤的具体内容: 1. 数据来源:确保数据格式正确,通常是NIfTI格式,用户可能需要确认数据是否符合要求。 2. AC校正(Reorient):调整图像方向,使前连合(AC)对齐,这是SPM中的常见步骤,可能需要使用SPM的Display工具手动调整。 3. 分割:使用CAT12进行组织分割,分为灰质、白质、脑脊液。CAT12可能基于SPM的分割算法,但可能有改进,如更精确的配准或优化参数。 4. 去颅骨:去除颅骨等非脑组织,通常通过分割后的掩膜实现。 5. 配准到MNI空间:使用DARTEL或Geomorphic进行非线性配准,将个体脑结构映射到标准空间,可能需要提到采用的算法或参数设置。 6. 调制:在空间标准化后,保留体积信息,通常通过乘以雅可比行列式的绝对值来调整体素强度,公式为$GM_{modulated} = GM_{normalized} \times |J|$,这里需要正确使用数学格式。 7. 输出文件:生成调制后的灰质、白质图像,以及可能的平滑文件,保存为nii格式。 此外,预处理后的步骤可能包括平滑(使用高斯核)统计分析(如VBM分析中的组间比较,使用SPM的统计模块)。需要确保每个步骤的解释准确,并引用用户提供的参考文献,如分割步骤参考引用[1][3]。 可能还需要考虑常见问题,如参数设置、质量控制(QC)步骤,CAT12会自动生成QC报告,用户需要检查分割质量,处理失败的情况等,这部分在引用[3]中提到的博客可能有提及。 最后,生成相关问题,需要围绕Cat12 VBM处理流程,可能的优化、步骤意义、常见错误、数据要求、QC方法、结果解读等。 检查是否符合所有系统指令:中文回答,结构清晰,数学格式正确,引用标识自然添加,相关问题生成。确保没有使用任何markdown格式,代码块用三个反引号包围,并正确缩进。</think>### Cat12 VBM分割前后处理流程详解 Cat12结合SPM12VBM(基于体素的形态学分析)流程主要用于分析脑结构MRI数据,流程包含以下核心步骤: --- #### 、数据准备 1. **数据格式检查** MRI数据需转换为NIfTI格式(`.nii`或`.nii.gz`),确保图像方向与标准模板致[^1]。 --- #### 二、预处理流程 1. **AC校正(Reorient)** 手动调整图像方向,使前连合(AC)与后连合(PC)对齐,确保后续配准精度。通过SPM的`Display`工具完成[^1]。 2. **组织分割** 使用Cat12进行脑组织分割,生成灰质(GM)、白质(WM)、脑脊液(CSF)概率图。 ```matlab % Cat12分割代码示例(Matlab环境) cat12('run_segment', {'T1.nii'}, 'opts'); ``` 分割过程结合了SPM的算法Cat12的优化参数(如改进的配准模板)[^2]。 3. **去颅骨(Skull Stripping)** 基于分割结果生成脑掩膜,去除颅骨非脑组织,输出仅包含脑区的图像[^3]。 4. **空间标准化(Spatial Normalization)** 将个体脑图像配准至MNI标准空间,常用DARTEL或Geomorphic算法。公式表示为: $$ \mathbf{X}_{\text{MNI}} = T(\mathbf{X}_{\text{orig}}) $$ 其中$T$为非线性变换矩阵[^1]。 5. **调制(Modulation)** 补偿空间标准化导致的体积变化,保留原始体积信息。通过雅可比行列式调整体素值: $$ GM_{\text{mod}} = GM_{\text{norm}} \times |J| $$ 其中$|J|$为变换的雅可比行列式绝对值。 6. **输出文件** 生成调制后的灰质/白质图像(`mwp1*.nii`)及原始空间图像(`p1*.nii`),保存为NIfTI格式。 --- #### 三、后处理与分析 1. **平滑(Smoothing)** 使用高斯核(如8mm FWHM)平滑图像,提高信噪比统计效力: ```matlab spm_smooth('mwp1T1.nii', 'smwp1T1.nii', [8 8 8]); ``` 2. **统计分析** 在SPM中设计广义线性模型(GLM),进行组间比较(如患者 vs 健康人),通过$t$检验或ANOVA分析体素水平的差异[^2]。 --- #### 四、质量控制(QC) 1. **Cat12自动QC报告** 检查分割精度、配准质量等指标,低质量数据需排除或重新处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值