Sentinel熔断与限流

一、服务雪崩与解决方案

1.1、服务雪崩问题

一句话:微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

image-20240827204943349

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

image-20240827205002590

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

image-20240827205244584

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

image-20240827205256638

解决雪崩问题的常见方式有四种:

1.2、超时处理

超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

image-20240827205650618

1.3、仓壁模式

仓壁模式来源于船舱的设计:

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

image-20240827205714458

1.4、断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

image-20240827205519805

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

image-20240827205540092

1.5、限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

image-20240827205625160

1.6、总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

  • 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

  • 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

  • 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

二、初识Sentinel

在SpringCloud当中支持多种服务保护技术:

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

Sentinel Hystrix
隔离策略 信号量隔离 线程池隔离/信号量隔离
熔断降级策略 基于慢调用比例或异常比例 基于失败比率
实时指标实现 滑动窗口 滑动窗口(基于 RxJava)
规则配置 支持多种数据源 支持多种数据源
扩展性 多个扩展点 插件的形式
基于注解的支持 支持 支持
限流 基于 QPS,支持基于调用关系的限流 有限的支持
流量整形 支持慢启动、匀速排队模式 不支持
系统自适应保护 支持 不支持
控制台 开箱即用,可配置规则、查看秒级监控、机器发现等 不完善
常见框架的适配 Servlet、Spring Cloud、Dubbo、gRPC 等 Servlet、Spring Cloud Netflix
https://sentinelguard.io/zh-cn/index.html
https://github.com/alibaba/Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

image-20240827210841757

三、微服务整合Sentinel

3.1、改POM

 <dependencies>
        <!--sentinel-->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
        </dependency>
    </dependencies>

image-20240827214826617

3.2、写YAML

server:
  port: 9001

spring:
  application:
    name: sentinelservice
  cloud:
    nacos:
      discovery:
        server-addr: 192.168.200.129:8848 #配置Nacos地址
    
    sentinel:
      transport:
        dashboard: 192.168.200.129:8858 #配置Sentinel dashboard控制台服务地址
        port: 8719 #默认8719端口,假如被占用会自动从8719开始依次+1扫描,直至找到未被占用的端口

image-20240827215202688

3.3、主启动

package com.sentinel.service;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;

/**
 * @Author: 史小创
 * @Time: 2024/8/27 下午9:43
 * @Description:
 */

@SpringBootApplication
@EnableDiscoveryClient
public class SentinelServiceApplication {
   
   
    public static void main(String[] args) {
   
   
        SpringApplication.run(SentinelServiceApplication.class, args);
    }
}

image-20240827215302783

3.4、测试

image-20240827215421736

image-20240827215459305

原因:Sentinel采用的为懒加载的模式。想使用Sentinel对某个接口进行限流和降级等操作,一定要先访问下接口,使Sentinel检测出相应的接口

http://localhost:9001/testA
http://localhost:9001/testB

image-20240827215846359

四、实战:流控规则

4.1、概述

image-20240827220426995

Sentinel能够对流量进行控制,主要是监控应用的QPS流量或者并发线程数等指标,如果达到指定的阈值时,就会被流量进行控制,以避免服务被瞬时的高并发流量击垮,保证服务的高可靠性。参数见最下方:

序号 名称 含义
1 资源名 资源的唯一名称,默认就是请求的接口路径,可以自行修改,但是要保证唯一。
2 针对来源 具体针对某个微服务进行限流,默认值为default,表示不区分来源,全部限流。
3 阈值类型 QPS表示通过QPS进行限流,并发线程数表示通过并发线程数限流。
4 单机阈值 与阈值类型组合使用。如果阈值类型选择的是QPS,表示当调用接口的QPS达到阈值时,进行限流操作。如果阈值类型选择的是并发线程数,则表示当调用接口的并发线程数达到阈值时,进行限流操作。
5 是否集群 选中则表示集群环境,不选中则表示非集群环境。

4.2、流控模式

image-20240827220951390

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

4.2.1、直连

默认的流控模式,当接口达到限流条件时,直接开启限流功能。

image-20240827221313582

image-20240827221330218

表示1秒钟内查询1次就是OK,若超过次数1,就直接-快速失败,报默认错误

http://localhost:9001/testA

1

Blocked by Sentinel (flow limiting) 这样的方式貌似太丑,能否有美观一点呢

4.2.2、关联

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

简单讲:当关联的资源达到阈值时,就限流自己。当与A关联的资源B达到阀值后,就限流A自己B惹事,A挂了。

image-20240827222328595

image-20240827222442555

当关联资源/testB的qps阀值超过1时,就限流/testA的Rest访问地址,当关联资源到阈值后限制配置好的资源名,B惹事,A挂了

http://localhost:9001/testB
http://localhost:9001/testA

2

小结:

满足下面条件可以使用关联模式:

  • 两个有竞争关系的资源
  • 一个优先级较高,一个优先级较低

4.2.3、链路

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

来自不同链路的请求对同一个目标访问时,实施针对性的不同限流措施,比如C请求来访问就限流,D请求来访问就是OK

web-context-unify: false # controller层的方法对service层调用不认为是同一个根链路

image-20240827223822595

package com.sentinel.service.service;

import com.alibaba.csp.sentinel.annotation.SentinelResource;
import org.springframework.stereotype.Service;

/**
 * @Author: 史小创
 * @Time: 2024/8/27 下午10:43
 * @Description:
 */

@Service
public class FlowLimitService {
   
   

    @SentinelResource(value = "common")
    public void common() {
   
   
        System.out.println("------FlowLimitService come in");
    }
}

image-20240827224459534

 /**
     * 流控-链路演示demo
     * C和D两个请求都访问flowLimitService.common()方法,阈值到达后对C限流,对D不管
     */
    @Resource
    private FlowLimitService flowLimitService;

    @GetMapping("/testC")
    public String testC() {
   
   
        flowLimitService.common();
        return "------testC";
    }

    @GetMapping("/testD")
    public String testD() {
   
   
        flowLimitService.common();
        return "------testD";
    }

image-20240827224607692

image-20240827224717762

image-20240827224837210

http://localhost:9001/testC
http://localhost:9001/testD

5

4.3、流控效果

在流控的高级选项中,还有一个流控效果选项:

image-20240827225952576

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

4.3.1、快速失败

4.3.2、预热Warm up

https://github.com/alibaba/Sentinel/wiki/Flow-Control:-Warm-Up
https://github.com/alibaba/Sentinel/wiki/%E9%99%90%E6%B5%81---%E5%86%B7%E5%90%AF%E5%8A%A8

image-20240828080826894

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

image-20240828080911618

如:秒杀系统在开启的瞬间,会有很多流量上来,很有可能把系统打死,预热方式就是把为了保护系统,可慢慢的把流量放进来,慢慢的把阈值增长到设置的阈值。

默认 coldFactor 为 3,即请求 QPS 从 threshold / 3 开始,经预热时长逐渐升至设定的 QPS 阈值。

image-20240828081044514

https://github.com/alibaba/Sentinel/blob/1.8/sentinel-core/src/main/java/com/alibaba/csp/sentinel/slots/block/flow/controller/WarmUpController.java

image-20240828081219370

默认 coldFactor 为 3,即请求QPS从(threshold / 3) 开始,经多少预热时长才逐渐升至设定的 QPS 阈值。
案例,单机阈值为10,预热时长设置5秒。
系统初始化的阈值为10 / 3 约等于3,即单机阈值刚开始为3(我们人工设定单机阈值是10,sentinel计算后QPS判定为3开始);
然后过了5秒后阀值才慢慢升高恢复到设置的单机阈值10,也就是说5秒钟内QPS为3,过了保护期5秒后QPS为10

image-20240828081428677

image-20240828081601147

http://localhost:9001/testB

3

image-20240828082156779

4.3.3、排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

image-20240828082324502

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

image-20240828082358536

平滑的QPS曲线,对于服务器来说是更友好的。

@GetMapping("/testE")
    public String testE() {
   
   
        System.out.println(System.currentTimeMillis() + "      testE,排队等待");
        return "------testE";
    }

image-20240828082554438

http://localhost:9001/testE

image-20240828083318096

4

image-20240828083731619

4.4.4、总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

4.4、线程隔离(舱壁模式)

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

image-20240828232857421

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

image-20240828232923471

用法说明

在添加限流规则时,可以选择两种阈值类型:

image-20240828232953989

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

实操

image-20240828233245078

image-20240828233952370

Jmeter给它打满了,大部分我们自己访问都不好使,偶尔Jmeter线程切换系统判定没访问,我们自己的点击才有点机会

五、实战:熔断规则

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

image-20240828090457975

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

https://sentinelguard.io/zh-cn/docs/circuit-breaking.html
https://github.com/alibaba/Sentinel/wiki/%E7%86%94%E6%96%AD%E9%99%8D%E7%BA%A7

image-20240828090248426

5.1、慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

慢调用比例 (SLOW_REQUEST_RATIO):选择以慢调用比例作为阈值,需要设置允许的慢调用 RT(即最大的响应时间),请求的响应时间大于该值则统计为慢调用。当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且慢调用的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求响应时间小于设置的慢调用 RT 则结束熔断,若大于设置的慢调用 RT 则会再次被熔断。

/**
     * 新增熔断规则-慢调用比例
     *
     * @return
     */
    @GetMapping("/testF")
    public String testF() {
   
   
        // 暂停几秒钟线程
        try {
   
   
            TimeUnit.SECONDS.sleep(1
Sentinel熔断降级限流是一种用于保护应用程序的机制,它可以防止应用程序不断执行可能失败的操作,并快速拒绝可能导致错误的调用。熔断降级规则是熔断降级机制的核心属性之一。\[1\] 熔断降级规则的配置可以通过在应用程序中设置相关属性来实现。例如,在Spring Cloud中,可以通过配置`spring.cloud.sentinel.transport.dashboard`属性来指定Sentinel控制台的地址,以及通过`management.endpoints.web.exposure.include`属性来开放管理端点。\[2\] 熔断降级机制的作用是在感知到下游服务的资源出现不稳定状态时,暂时切断对下游服务的调用,而不是一直阻塞等待服务响应。这样可以防止级联失败导致的雪崩效应,并保证系统的可用性。在微服务架构下,熔断降级机制尤为重要,可以保护后端不会过载。\[3\] 熔断降级规则包含一些核心属性,可以根据具体需求进行配置。这些属性包括但不限于超时时间、异常比例、最小请求数等。当资源被熔断降级后,在降级时间窗口内,对该资源的调用会自动返回降级数据。当检测到该节点的服务调用响应正常后,熔断机制会恢复调用链路。\[3\] 总结来说,Sentinel熔断降级限流是一种保护应用程序的机制,通过设置熔断降级规则来防止应用程序执行可能失败的操作,并在下游服务资源不稳定时暂时切断对下游服务的调用。这样可以防止级联失败导致的雪崩效应,并保证系统的可用性。熔断降级规则包含一些核心属性,可以根据具体需求进行配置。\[1\]\[3\] #### 引用[.reference_title] - *1* *3* [sentinel 限流熔断神器详细介绍](https://blog.csdn.net/a745233700/article/details/122733366)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Sentinel服务流控、熔断和降级](https://blog.csdn.net/m0_49183244/article/details/124273538)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值