银行风控建模

风控简介

所谓风险控制(风控),即针对用户风险进行管理规避的过程。
在风控环节中,传统观念A卡为主、B卡C卡为辅,但是在市场逐步饱和、政策利率要求越来越低的背景下,B卡和C卡也越来越重要。

贷前阶段:

这一阶段的数据来源主要分为申请信息、历史消费信息、外部信息(例如多投借贷、公积金等)。常用风控模型包括:
1、用户响应风控模型:针对互联网,数据来源多样,类似漏斗模式,分析获客阶段的用户转化情况,如:引流、导流、注册成功等信息,以及在某个阶段进行埋点分析流失状态。
2、申请评分卡风控模型:即A卡,主要侧重贷前风控,在客户获取初期,建立申请评分卡模型,预测未来客户在放款后逾期与违约的概率。
3、申请反欺诈风控模型:识别欺诈风险高的客户,捕捉各类欺诈行为,如身份造假,非客户本人的行为等。一般分为第一方反欺诈和第三方反欺诈。
4、风险定价风控模型:根据客户的历史情况分析,应该制定多少初始额度和初始利率比较合适。
5、用户价值风控模型:在风险评分难以决策的灰分区域,制定置入置出策略,预测客户在开户后能够为机构带来潜在收益。在相同风险等级客户里,可以筛选收益等级高的客户,最大化挖掘其收益潜力。

贷中阶段:

和贷前阶段不同,这个阶段用户已经有过至少一次的还款行为,所以在数据维度会加入借贷数据,进入到贷中客户管理阶段。常用风控模型包括:
1、行为评分卡风控模型:也就是我们常说的B卡,通过分析不断去挖掘客户的各种需求,去推荐一些差异化的信贷产品,主要是给我们的客户交叉销售产品和提额。
2、交易反欺诈风控模型:交易阶段,识别一些羊毛党刷单、薅羊毛和套现行为。
3、客户流失风控模型:对客户流失的原因进行分析,提前知道哪些客户会流失,及时采取挽回措施。

贷后阶段:

经过以上两个阶段,还有一小部分用户会逾期进入催收阶段。常用风控模型包括:
1、催收预警风控模型:预测出来一些轻度逾期的客户,这类客户可能只是单纯的忘记还款而已,这个时候就不需太多人工催收参与进来,先进行短信提醒等简单的催收工作即可。
2、还款率预测风控模型:预测经过催收之后,最终收回的欠款比率。
3、迁徙率模型:评估客户短期内会不会违约,可以预测逾期的人群从轻度逾期发展到重度逾期的概率。
4、失联修复风控模型:逾期阶段,客户本身联系不上,通过数据库挖掘新的联系方式(如,身边的亲戚朋友等),修复客户失联状态。

一、好坏样本定义

好坏样本的定义需要根据实际的业务需求进行界定,而不是存在逾期就界定为坏样本(由于收益与风险的正比关系,银行为了找到平衡,不会认为所有发生过逾期的客户都是坏客户,并且“适当”的逾期不仅不会带来损失,反而带来了可观的逾期利息收入),所以对于银行来说,他所关注的坏客户是坏到某一程度,也就是逾期等级较高且不还款的客户。

  • Vintage分析(账龄分析)用于确定合适的表现期,即确定有多久表现期的客户能纳入模型。(表现期越长,信用风险暴露将越彻底,但意味着观察期离当前越远,用以提取样本特征的历史数据将越陈旧,建模样本和未来样本的差异也越大。反之,表现期越短,风险还未暴露完全,但好处是能用到更近的样本;随着账龄的变化,贷款逾期的变化情况,贷款逾期趋于稳定后,则可作为表现期,比如经过6个月);
  • 滚动率分析用于定义客户的好坏程度(逾期状态为M4的客户,几乎都会进一步恶化,则可将M4作为坏样本)。

1.2 名词定义

假设有一个人在2021年4月12日上午10点8分在网络平台上借了一笔1万元的信用贷款,以等额本息的方式在未来12个月进行偿还。
在这里插入图片描述
1.观察点(obs_date):客户贷款的时点(2021年4月12日上午10点8分)。
我们用截止到贷款申请时点过去一段时间的数据去预测客户未来逾期的可能性。
2.观察期:用来生成客户特征(自变量)的时间区间。
3.表现期:用来定义客户好坏的时间区间。严格来讲,分期12期的客户只有在所有钱都还完后才能定义好坏。
但是通过
Vintage分析
可以看出放款客户在经过多久后,该变坏的已经变坏,剩下的基本都能按时还款了,从而可以缩短表现期的时间,增加能进入建模的客户数量。
**4.表现点:**截止到多长时点的客户能被定义成“好客户”和”坏客户“。
5.账龄MOB(Month on Book):资产放款月份。
MOB0:放款日至当月月底,例子中指2021年4月12日到2021年4月30日。
MOB1:放款第二个月,例子中指2021年5月1日到2021年5月31日。
MOB2:放款第三个月,例子中指2021年5月1日到2021年5月31日。
MOB3:放款第四个月,例子中指2021年6月1日到2021年6月30日。
依此类推,
MOB12:指放款第13个月,例子中指2022年3月31日到2022年4月30日。
如果产品是12期的,那么该资产的生命周期是12期,MOB最大到MOB12。如果产品是24期的,MOB最大到MOB24。

6.逾期: 客户未能在应还款日全额偿还当月应还款额,那么这个合同就产生了逾期。

7.逾期天数DPD(Days Past Due)
定义:客户到了应还款日还未还款,逾期天数为应还日次日起到实还日(含)期间的日数,如客户当期未还款无实还日,则取数据统计日取代实还日。
表达方式:DPDN+表示逾期天数≥N天的客户,如DPD60+表示逾期天数≥60天的客户。
示例:
在这里插入图片描述
即客户在第一个还款日(2021年5月12日)未还款,那么2021年5月13日即为逾期一天,客户在5月17日还款,该客户首逾5天。
其他说明:
分析时按需求可采用任何逾期天数,如逾期3天/7天/15天/30天等。
分析时按逾期天数设定取决于入催方式及催回率。
8.逾期期数
计算方式:以指定的逾期天数作为逾期一期,如逾期1-30天对应M1、逾期31~60天对应M2、以此类推,则逾期期数和逾期天数有必然对应关系,可以通过逾期天数直接计算逾期期数(注:不同的机构划分可能会有差异)。
定义:自应还日次日起到实还日(含)期间的期数,如客户当期未还款无实还日,则取数据统计日取代实还日。
表达方式:
M0:正常资产,当前未逾期(也可用C来表示)。
M1:逾期1-30天,逾期一期。
M2:逾期31-60天,逾期二期。
M3:逾期61-90天,逾期三期。
M4:逾期91-120天,逾期四期。
M5:逾期121-150天,逾期五期。
M6:逾期151-180天,逾期六期。
Mn:逾期30n-29~30n天,逾期N期。
类似的,
M3+:逾期90天以上,逾期3期(不含)以上。
M4+:逾期120天以上,逾期4期(不含)以上。
M6+:逾期180天以上,逾期6期(不含)以上,也被称为呆账,会注销账户。
Mn+:逾期3*n天以上,逾期n期(不含)以上。

9.逾期率
订单笔数口径:逾期率=逾期订单笔数/总放贷订单笔数
金额口径:逾期率=逾期剩余本金/总放贷本金。

1.3 账龄分析(Vintage Analysis)

Vintage一词最初来源于葡萄酒业 。由于每年采摘的葡萄会受到日照、气温、降水等因素的影响,最终酿造的葡萄酒品质会存在差异。在窖藏一定年份后,葡萄酒的品质将趋于稳定,也就是品质成熟,这段年份数被称为成熟期(maturity)。
在这里插入图片描述
Vintage曲线主要用途包括:

  • 分析变化规律:评估不同年份的葡萄酒的品质随着窖藏时间推移的变化规律。某些年份的葡萄酒浓度在入窖第1年就能达到较高的水平,但上升缓慢;有些起点低,但上升快 。
  • 确定最终品质:Vintage曲线最终稳定值,表明了这批葡萄酒的最终酒精浓度 。
  • 确定成熟期:由上图可知,在入窖第6年后,酒精浓度稳定不变,可以确定成熟期是6年,我们最早在第6年就可以开桶品尝 。
  • 分析影响因素:根据Vintage曲线特征,我们可以分析某个年份的葡萄所受到的环境影响因素,从而改善生产工艺。比如,由于某一年的光照不充分,糖分积累少,酒精浓度可能最终就比较低。我们就可以人工增加光照强度 。

在信贷领域中,我们也可以用Vintage曲线分析资产(portfolio)质量的成熟过程变化规律。为更容易理解,在此列举了Vintage分析过程中两个领域的对应关系
在这里插入图片描述
遵循同样的分析思路,按账龄(MOB)长短对齐后比较,我们可以了解同一产品不同时期放款的资产质量。

  • 确定资产质量:一般以逾期率来定义资产质量,也就是曲线平缓后对应的逾期率。
  • 分析变化规律:资产质量(例如逾期率指标)的变化情况,如果前几期逾期率上升很快,那么说明短期风险没有捕捉住,欺诈风险较高;反之,如果曲线一直在上升,说明信用风险识别能力不佳。
  • 确定账户成熟期:用来判断客户展现好坏的时间因素,从而帮助定义表现期。
  • 分析影响因素:风控策略收紧或放松、客群变化、市场环境、政策法规等都会影响资产质量。分析影响因素,可以用来指导风控策略的调整。

1.目的:统计每个月新增放款后在每个MOB中的逾期情况,对比每月放款的逾期情况,判断策略、模型的有效性,分析客户的风险成熟期。
2.表现方式:Vintage曲线的横坐标是MOB,纵坐标是逾期率。逾期率可以计算金额维度的,也可以计算订单维度的。
3.逾期率计算及统计方式(金额):

  • 逾期率=逾期剩余本金/总放贷本金。
  • 分母是放款当月的总计本金,即合同金额,不随时间变动(不因结清或核销减少)。
  • 分子是逾期达到Bad定义时的本金余额,假设Bad定义为M3+,分子有两种计算方式。
    在这里插入图片描述
    4.逾期率计算及统计方式(订单笔数):
  • 逾期率=逾期订单笔数/总放贷订单笔数
  • 分母是放款当月的总计订单笔数,不随时间变动(不因结清或核销减少)。
  • 分子是逾期达到Bad定义时的订单笔数,假设Bad定义为M3+,分子同样有两种计算方式。
    在这里插入图片描述

1.3.2 Vintage表建立

现假设有一款对客费率36%的现金贷产品,产品期限12期,件均2千元,月均放款笔数在1万笔左右,还款方式为等额本息。
由滚动率分析可以得到逾期Mn+的客户几乎不会从良,从而可以定义坏客户为Mn+的客户。
本文假设该产品通过滚动率分析后得到逾期状态为M3+的客户几乎不会从良。
统计2021年3月到2022年5月(如今)该产品的放款表现,可得到如下表格:
在这里插入图片描述
按MOB的维度,把不同放款月份的订单重新整理,可得到如下表格:
在这里插入图片描述
把MOB维度的表绘制成折线图,可得到如下Vintage表:
在这里插入图片描述

由vintage表知:

①横轴表明客户的生命周期,体现了客户成熟过程中发生的变化。
②纵轴体现了拥有相同账龄的客户随时间改变而发生的变化,展示了不同月份的违约率变化情况。
③由于产品期限为12期,所以MOB(账龄)最长为12个月,反之也成立。
④数据统计的是Ever M3+逾期率,所以账龄MOB1、MOB2的都为0。
⑤放贷月份从2021年3月到2021年11月账户的逾期率都在降低,说明资产质量在不断提升,有可能是风控对该产品风险维度有了更全面的认识,风控水平在不断提升。
⑥不同月份放款的客户在经过9个MOB后逾期率M3+趋于稳定,说明账户的成熟期是9个月
⑦由于统计的是Ever M3+逾期率,所以单月的逾期率数值只增不减。

从该Vintage表知,如果我们现在想要建立信用贷前评分卡模型(A卡),有完整表现(放款走完了12 期)的放款月份是2021年3月到2021年6月。
如果只以有完整表现的数据建模,样本只能从放款月份是2021年3月到2021年5月的客户中取。
如果以账户成熟期9个月的数据建模,样本可以从2021年3月到2021年8月中取,多三个月的样本数据。
由于该Vintage表的数据是虚造的,看起来比较清晰。现实中有些放贷数据可能突然在某一个月由于流量、外部环境、风控策略调整等因素导致逾期表现突增。
比如有一个电商客群贷,产品期限12期、件均5,000元、对客费率36%的现金贷产品,Vintage表现如下(数据经过处理):
在这里插入图片描述
从该产品的Vintage表中可以看到2018年10月的放款逾期率相较于之前月份陡增,可能是由于由于流量、外部环境、风控策略调整等因素造成的。

1.4 滚动率分析

1.目的:为了让风控模型有更好的区分能力,我们需要确定逾期多久的客户定义为1(坏客户)。
因为有些逾期几天的客户很可能是忘记还款了,经过提醒就还了,并非没有还款意愿和还款能力。
如果所有有逾期表现的客户都定义为1,会导致模型的坏客户定义不清晰,从而影响模型的区分能力。
滚动率分析可以展示客户在不同时间段从一种状态向另一种状态转移的情况,从而可以分析不同逾期状态的客户发展变化情况。
2.定义:从观察点1之前一段时间(观察期1)的最坏状态,向观察点1之后一段时间(观察期2)的最坏状态转移情况。
在这里插入图片描述
3.滚动率分析具体步骤:
step1:选择观察点1,以观察点1为截止时间,根据还款计划表统计客户在观察期1(如过去6个月)的最长逾期期数,按最坏逾期状态将客户分为不同层次,如C、M1、M2、M3、M4+等。
step2:以观察点1为起始时间,统计客户在观察期2(如未来6个月)的最长逾期期数,按最坏逾期状态将用户分为不同层次,如C、M1、M2、M3、M4+等。
step3:交叉统计转移矩阵中的客户数。
step4:根据转移矩阵中的客户数统计占比。
step5:选择不同的观察点,重复step1~step4,对比滚动率数值。
例如,选择观察点为2021年6月30日晚上12点,取20,000个客户作为观察对象,统计这些客户从观察期1到观察期2的最大逾期状态变化情况。
首先统计出如下客户逾期状态的明细表(非真实数据):
在这里插入图片描述
根据逾期状态明细表统计出如下滚动率分析矩阵:
在这里插入图片描述

观察滚动率分析矩阵可知:
①观察期1中逾期状态为C(正常)的客户,在未来6个月里,有95.29%会继续保持正常状态,4.71%会转变为逾期客户。
②观察期1中逾期状态为M1的客户,未来有81.16%会回到正常状态,即从良率为81.86%,有11.96%依然是M1状态,6.88%会进一步恶化。
③观察期1中逾期状态为M2的客户,从良率为25.96%,有6.41%转化为M1状态,26.12%依然是M2状态,41.51%会进一步恶化。
④观察期1中逾期状态为M3的客户,从良率为19.77%,10.6%转化为M1和M2,11.46%依然是M3状态,58.17%会进一步恶化。
⑤观察期1中逾期状态为M3+的客户,从良率为3.36%,24.16%转化为M1、M2和M3,72.48%依然是M3+状态。

根据从良率数量来看,逾期状态为M3+的客户几乎不会从良,为了让风控模型有更好的区分能力,可以定义坏客户为逾期状态为M3+(逾期超过90天)的客户。
实际信贷建模时,由于业务规模、产品上线时间等约束,建模样本量可能较少,导致坏样本数量更少。
有时会人为划定逾期n天以上的为1(坏样本),未逾期的客户定义为0(好样本),逾期n天以内的定义为灰样本(舍弃)。
现在逾期多少天以上的客户定义为坏客户已经有了衡量的标准。需要确定有多久表现期的客户才能纳入评估。
假设一个产品的贷款期限是12期,我们是需要12期都走完才能定义一个客户是否为坏客户吗?
严格来讲,确实如此。否则,我们只能说到目前为止,该客户不是坏客户,但并不能知道在未来几期会不会逾期变成坏客户。
而且有些账户是在前几期就达到M3+,有些是在后几期才达到M3+。
因此,我们只需确定一个合适的表现期能够覆盖足够多的坏客户即可。vintage分析就是确定表现期设定多久比较合适。

1.5 因变量Y的确定

1.定义:因变量Y即为客户好坏标签变量。
2.方法:用滚动率分析定义客户的好坏程度,Vintage分析确定合适的表现期。
3.具体操作步骤:

  • step1:利用滚动率定义坏客户,例如上文案例中定义:逾期率为M3+的客户是坏客户。
  • step2:以M3+作为资产质量统计指标,统计Vintage数据表,绘制Vintage曲线,分析账户成熟期。例如上文案例确定:账户成熟期是9个月。
  • step3:表现期大于成熟期的样本可以用于建模,表现期小于成熟期的样本无法准确定义Y变量,暂时舍弃。

因此,我们将两者结合起来,定义:

  • Bad = 账户经过9期表现期后,逾期状态为M4+(逾期超过90天)。
  • Good = 经过9期表现期,但未达到M4+逾期状态。
  • Intermediate = 未进入9期表现期,账户还未成熟,无法定义好坏,也就是不定样本。

1.6、迁移率分析法

迁移率分析法(Flow Rate)也叫做净流量滚动比例法(Net Flow Rate),能形象展示客户贷款账户在整个生命周期中的变化轨迹,也是预测未来坏账损失的最常用的方法。
其核心假设为:处于某一逾期状态(如M2)的账户,一个月后,要么从良为M0账户,要么恶化为更坏的下一个逾期状态(如M3)。

迁移率 = 前一期逾期金额到下一期逾期金额的转化率

一般缩写为M0-M1、M4-M5等形式,例如:
M0-M1 = 当月进入M1的贷款余额 / 上月末M0的贷款余额
M2-M3 = 当月进入M3的贷款余额 / 上月末M2的贷款余额

迁移率分析的具体操作步骤为:

  • step 1. 定义逾期状态,如前文所述的M0、M1、M2等。
  • step 2. 计算各逾期状态之间的迁移率,如M0-M1、M2-M3等。
  • step 3. 计算不同月份(也可称为Vintage)的平均迁移率。目的是对本平台在不同时期的资产的迁移率有整体的认知。
  • step 4. 根据平均迁移率和不良资产回收率,计算净坏账损失率。
    接下来,我们以数值案例(非真实业务数据)展示上述过程。
    在这里插入图片描述

表2中,2月份的逾期M1资产只能从1月份的正常M0资产滚动而来,因此从逾期M0资产向M1的转化率为237338/1007844=23.55%。
以此类推,我们可以计算所有月份的资产恶化率。黄色部分为不良资产的恶化迁移路径,其计算口径为:
截止1月末,正常M0资产为1007844元,这是起点。
截止2月末,1月末的正常M0资产中有 237338/1007844=23.55% 恶化为逾期M1资产。
截止3月末,2月末的逾期M1资产中有 55362/237338=23.33% 恶化为逾期M2资产。
截止4月末,3月末的逾期M2资产中有25144/55362=45.42%恶化为逾期M3资产。
截止5月末,4月末的逾期M4资产中有20965/25144=83.38%恶化为逾期M5资产。此时已过催收黄金期(90天以内)。
截止6月末,5月末的逾期M5资产中有10350/20965=49.37%恶化为逾期M6资产。这可能采用了委外催收、司法手段等催收策略,效果显著。
截止7月末,6月末的逾期M5资产中有8559/10350=82.70%恶化为逾期M7资产。此时将视为不良资产,打包转卖给第三方公司,这样就能回收部分不良资产,减少损失。
通过迁移率,我们可以清晰观察到每个Vintage的资产在各逾期状态的演变规律。

表2中,我们从横向比较每个月的迁移率,发现不完全一样。这是因为随着时间推移、外在宏观经济环境、内部政策等变化而产生一定的波动。我们可以利用这些数据:

  • 观察迁移率的发展轨迹,监控坏账的发展倾向和催收效果。
  • 通过对多个月份的迁移率计算平均值,从而使迁移率更加稳定。

1.7 坏账准备金

呆帐风险是信贷机构必须面对的风险,主要来源于信用风险和欺诈风险等。为了应对未来呆帐的可能,信贷机构一般都会设定一个储备资金,这就是坏账准备金(Bad Debt Reserve)。
一般做法是,把未清偿贷款余额乘以一定的准备金比例(Reserve Ratio)所得。可以理解,资产逾期等级越高(越差),准备金比例也应该越高,因为恶化为呆帐的可能性也更高。正常M0资产恶化为呆帐的可能性最低,因此我们预留的准备金比例也就最少。
我们总结下计算坏账准备金的步骤为:

  • step 1. 统计未清偿贷款金额的分布,也就是M0~M6状态分别对应的资产余额。
  • step 2. 为每个逾期状态的资产分配一个准备金比例。
  • step 3. 每个子项目的准备金金额 = 未清偿贷款余额 x 准备金比例。
  • step 4. 每个子项目的准备金金额相加,得到最终的准备金。
    在这里插入图片描述

最关键的准备金比例是如何给出的?
由于坏账准备金是用来覆盖预期的未来呆帐损失的,准备金比例必须等于处于各个逾期状态的资产未来演变为呆帐的比例。
回到迁移率分析中,我们发现从正常M0资产迁移至逾期M7资产(呆帐)需经过7次迁移,如图11所示。那么,我们只要把各个状态之间的转化率相乘,不就得到准备金比例了?
在这里插入图片描述
因此,我们定义正常M0资产对应的毛坏账损失率,也就是迁移到呆帐的转化率为:

毛坏账损失率=(M0-M1)×(M1-M2)×…×(M6-M7)
在本案例中,正常M0资产对应的毛坏账损失率为:16.1%×29.28%×42.27%×80.1%×53.6%×80.32%×88.03%=0.60%

在实际中,信贷机构会将不良资产打包转卖给第三方公司,这样就能回收部分不良资产,减少损失。因此,我们定义净坏账损失率为:
净坏账损失率 = 毛坏账损失率 - 不良资产外卖回收率
由于M7不良资产的平均回收率为10.79%,则可计算净坏账损失率为:
0.60%×(1-10.79%)=0.54%
同理,我们可以计算正常资产到不同逾期状态资产的毛损失率和净损失率如下:
在这里插入图片描述
根据图所示的损失率表,我们定义:
当月应计拨备额 = SUM(净坏账损失率 * 月末应收账款余额)
拨备率 = 当月应计拨备额 / 总资产金额
其中,拨备率是用来预防不良资产的发生而准备的金额的比例。拨备率应越低越好。拨备率越高说明风险越大,损失越大,利润越小。
在这里插入图片描述
在本案例中,当月应计拨备额为65421元,如图13所示。拨备率为:65421/2625091=2.49%

二、建模流程

1)前期准备工作:不同的模型针对不同的业务场景,在建模项目开始前需要对业务的逻辑和需求有清晰的理解,明确好模型的作用,项目周期时间和安排进度,以及模型效果的要求。
2)模型设计:包括模型的选择(评分卡还是集成模型),单个模型还是做模型的细分,是否需要做拒绝推论,观察期,表现期的定义,好坏用户的定义,数据的获取途径等都要确定好。
3)数据拉取及清洗:根据观察期和表现期的定义从数据池中取数,并进行前期的数据清洗和稳定性验证工作,数据清洗包括用户唯一性检查,缺失值检查,异常值检查等。稳定性验证主要考察变量在时间序列上的稳定性,衡量的指标有PSI,平均值/方差,IV等。
4)特征工程:主要做特征的预处理和筛选,如果是评分卡,需要对特征进行离散化,归一化等处理,再对特征进行降维,降维的方法有IV筛选,相关性筛选,显著性筛选等。另外会基于对业务的深入理解做特征构造工作,包括特征交叉,特征转换,对特征进行四则运算等。
5)模型建立和评估:选择合适的模型,像评分卡用逻辑回归,只需要做出二分类预测可以选择xgboost等集成模型,模型建好后需要做模型评估,计算AUC,KS,并对模型做交叉验证来评估泛化能力及模型的稳定性。
6)模型上线部署:在风控后台上配置模型规则,对于一些复杂的模型还得需要将模型文件进行转换,并封装成一个类,用Java等其他形式来调用。
7)模型监控:前期主要监控模型整体及变量的稳定性,衡量标准主要是PSI,并每日观察模型规则的拒绝率与线下的差异。后期积累一定线上用户后可评估线上模型的AUC,KS,与线下进行比较,衡量模型的线上的实际效果。

三、常用模型

逻辑回归(最常用)
决策树
集成学习(随机森林,Adaboost,GBDT,XGBOOST,LightGbm)

四、模型效果

4.1.评分卡建模之前的评估:

主要评估建模样本的稳定性,根据评分卡的目的不同,比较对象为总体或者近段时间的样本。

4.2.建模过程的评估

变量分箱的同时会计算WOE,这里是对WOE进行可解释性上的评估,包括变化趋势,箱体之间WOE差异,WOE绝对值大小等。
变量稳定性的评估psi

4.3 模型评估

  • 1)区分度:主要是KS和GINI指标,一般二分类都是用KS衡量模型的效果,这里着重理解KS的定义及用法,理解AUC和KS的关系,他们之间有一个公式,大致可以推断出你模型得到的指标是不是正确的。
  • 2)准确性:主要是ROC曲线和AUC指标,理解AUC的定义和用法,需要注意的是,在建模的过程无论是训练集、测试集,还是验证集AUC的值不能相差太大,最好的状态是三个值一致。

4.4 模型上线后评估

4.4.1 前期监控(模型上线后一个月内):

1)模型最后设定cutoff点后可以得出模型的拒绝率(线下拒绝率), 上线后需要比较模型每日的拒绝率与线下拒绝率。如果两者差异较大,说明线上的用户与建模的用户分布有很大差异,原因可能是没做拒绝推断,或者用户属性随着时间发生了偏移。
2)监控模型整体的稳定性,通常用PSI来衡量两个时间点的差异程度。模型的稳定性是一个需要长期观察的指标,可绘制月/周PSI变化趋势图来分析稳定性的变化,从中可以发现用户是否随着时间推移属性发生了变化,以便及时对模型做出合理的调整。
3)变量稳定度分析,目的是如果模型的稳定性不好,可利用变量稳定度分析来了解是哪些变量造成的。对于不稳定的变量要分析其原因,并对模型做出调整,弃用不稳定的变量或者找其他变量来替换。

4.4.2 后期监控(用户表现出了好坏程度):

此时已积累了一些线上的好坏用户,可做模型的线上效果的评估,评估的指标有AUC, KS, 基尼系数,如果模型的线下效果好,但线上效果却不理想,这个模型是要做优化的。
好坏用户的评分分布。绘制线上好坏用户的评分分布图,如果符合期望(高分段好用户占比多,低分段坏用户占比多),则说明模型的线上的区隔能力较好。
变量鉴别力分析。用线上的好坏用户来计算变量的IV值,评价变量的预测能力,预测能力不好的变量可以考虑弃用。

五、评分卡分数转换

评分卡中不直接用客户违约率p pp,而是用违约概率与正常概率的比值,称为o d d s oddsodds,即:
在这里插入图片描述
原因是因为根据逻辑回归原理:
在这里插入图片描述
所以将odds映射成分数,可以和逻辑回归无缝连接。
在这里插入图片描述
评分卡的背后逻辑是odds的变动与评分变动的映射(把odds映射为评分),我们可以设计这个一个公式:
在这里插入图片描述
其中A与B是常数,B前面取负号的原因,是让违约概率越低,得分越高。

基准分:就是我们人为设定的或者根据行业标准设计的,我们要设定一个分数它对应一个固定的odds(坏好比),这个分数就是基准分,属于一个准则基础。
基础分:是对于生成的评分卡得到的,它是评分卡中固定的元素,不依赖任何模型特征的取值。
好坏比odds:我们可以看逻辑回归的公式、他是一个样本发生1的概率除以发生0的概率的比值。
PDO:就是坏好比降低一倍需要增加的分数。假定为50。或者坏好比增加一倍需要降低的分数,因为我们要求坏好比值越大,分数越低。
补偿:上图中求出的A就是补偿
刻度:上图中求出的B就是刻度

假定对数几率为1/60时设定的特定分数为600,PDO=50,那么对数几率为1/30时的分数就是650,可以得到:
600 = A - Blog(1/60)
650 = A - B
log(1/30)
可计算出A和B的值
由于logistic回归返回的即为对数几率,score计算公式可以写为:
在这里插入图片描述
其中x为特征,w为逻辑回归返回的特征参数;
基础分score = A - B*w0
计算每个特征中各个箱体的分数
最后合并计算得到最终得分。

六、线上部署

评分卡的部署较为简单,因为评分卡将变量映射到了一个个区间及得分,所以在普通的风控决策引擎上就可以配置。像一些比较复杂的模型,比如Xgboost和lightgbm,一般是将模型文件转换成pmml格式,并封装成pmml,在风控后台上传pmml和变量参数文件,并配置好模型的阈值。Python和R开发的模型都可以用这种方式来部署。

七、 其他

7.1 拒接推断

7.1.1 为什么要做拒绝推断

7.1.1.1 解决建模时的样本偏差问题

在开发准入模型(A卡)的时候,我们开发模型用的是通过的有表现的样本,而我们使用模型是在进件样本上,这就导致了模型开发和使用上的样本偏差。这种样本偏差有什么影响呢,我们可以从两方面去看。
1)从样本维度上:
假设这样一个场景,在一万人的申请样本中,存在这么一小撮具有相同特征的人,假设有1000人,这1000人整体坏账水平非常高,假设能有50%,而之前策略精挑细选,优中选优在这1000人中选出了50人给予了放款,这50人在后期表现上也毫无意外地表现良好。此时,如果我们仅使用有放款表现的样本建模,这50人的标签就是好人,模型对这样一小撮人的判断就是优质人群。而一旦我们用这样一个模型替代了原策略,就会导致这50%坏账水平的1000人全部被放进来。如果我们能通过拒绝推断推演出在拒绝样本上,这一小撮人是非常坏的,那我们构建的模型就不会对这样一小撮人的判断产生大的偏差。
2)从变量维度上:
假设有一个区分度很强的变量var1,因为其效果很好,所以我们会在策略中或老模型中对它相当倚重(比如策略中会用var1拒绝很大比例的人,或者模型中var1重要性排名第一)。而如果我们在迭代新模型时,选用的是近期通过样本,那这些样本则都是经过了var1变量筛选过的样本,自然var1在这样的样本上区分度会相对弱很多,很可能导致var1变量无法入模,或者即便入模了重要性也很低。这就会导致我们新迭代的模型没有使用到var1这个最好用的变量,导致模型远未达到它应有的效果。
业务上通过率越低,这种样本偏差带来的影响越大,尤其是当风控收紧导致业务出现大规模缩量时,如果继续用通过样本来建模,那很有可能导致风控再次宽松后的风险不可控。

7.1.1.2 方便策略下探时风险评估

1)规则下探
假设现在业务的首要任务是放量,策略要做的就是对某些规则进行下探,比如之前模型通过3挡,现在想要打开通过5挡,而4-5挡的人之前都是我们拒绝的人,表现根本看不到,如何评估这两档人群的风险呢。如果能有合理的拒绝推断,就能够对拒绝人群的风险进行一个估算。
2)替换评分卡
每次新评分卡迭代完成,我们都会做一个新老评分卡的swap分析(如图所示),其中老评分卡拒绝但新评分卡通过的人群,我们称之为swap-in人群(图中的Inf G人群),一旦用新卡替换老卡,这部分我们未知风险的人群就会被我们放进来,所以为了评分卡替换后风险的可估可控,我们需要拒绝推断来帮助我们评估swap-in这部分人群的风险水平。

7.1.2 拒绝推断的几种方法

1)开放部分测试集
最直接有效的拒绝推断办法就是开放一部分测试人群,给他们放款,直接看这部分人的表现怎样。根据需求放开的这部分人可以是所有进件人群,也可以是反欺诈规则之后的人群,还可以是模型决策时点的人群。一旦我们有了这部分测试人群的真实表现,就可以用来纠正建模样本偏差,或是用于策略风险估算。这种方式是最直接,最有效的拒绝推断方法,比任何其它理论推断都要精准,但这种方法缺点也很明显,一是成本高,因为放开策略往往意味着风险水平提高;二是定价不好定,这部分测试人群要怎么给他们定额度和费率呢,如果从节省成本的角度考虑,就给最低的额度,那这样会不会导致很对人风险暴露不出来呢。

开放测试方案建议把每天的测试准入人群缩小,但把时间线拉长,这样的样本可以平滑掉季节性振荡的影响。

2)借助外部数据
我们这边因拒绝而看不到表现的样本,可以借助外部数据源来反映他们的风险信息。比如中国互金协会和百行征信等等,都能够提供客户的历史逾期及多头信息,我们可以直接根据他们的数据来定义拒绝样本的好坏。
但使用外部数据同样存在很多问题,比如逾期口径不一致的问题,这个问题可以通过交叉对比外部数据标签和内部标签来解决,如果在表现样本上内外部标签的一致性足够高,那我们就可以直接使用。另一个问题就是坏容易定义但好不好区分,因为外部数据查不到并不代表这个客户每逾期,毕竟每个数据源覆盖度都有限,而且这个客户也可能是白户

3)简单数据扩充
第一步:根据已知好坏的样本训练一个模型;
第二步:用这个模型给所有拒绝样本打分;
第三步:设置一个切点,对于所有拒绝样本,得分高于该切点标记为坏,反之标记为好;
第四步:把所有标记样本加入到表现样本中重新训练模型。
为了使结果更加可靠,我们可以对第3-4步进行迭代,直到模型对样本的打分基本稳定。

4)打包法
打包法类似于上面提到的简单数据扩充法,区别之处在于在给拒绝样本打好坏标签时,不单单使用一个切分点,而是根据模型打分,把样本进行分组,并依据每组的预期坏账水平对该组样本进行好坏标记:
在这里插入图片描述
如图中所示,我们根据表现样本得分分了十档,根据每一档表现样本的坏账率,我们对组内的拒绝样本按照该组的坏账率随机打标记,比如190-199这一档,坏账是10%,拒绝样本有7334个,就可以根据比例,随机取733个标记为坏,剩下的标记为好。但根据业务经验,拒绝样本的坏账水平一般会高于通过样本,所以我们在给拒绝样本打标的时候可以适当对通过样本的坏账率乘以2-4倍

5)模糊扩增法
这种方法和简单数据扩增法类似,但不同于简单数据扩增法中根据切点简单粗暴打出好坏标签,模糊扩增法对每个拒绝样本一分为二,并分别乘以P(good)和P(bad)作为权重,步骤如下:
第一步:根据表现样本训练的模型对拒绝样本进行打分;
第二步:给出每个拒绝样本的好坏概率P(good)和P(bad);
第三步:把每个拒绝样本一分为二,一个好一个坏;
第四步:对好样本乘以权重P(good),对坏样本乘以权重P(bad),当然可以根据业务经验,对拒绝样本的坏权重进行2-4倍的放大;
第五步:把拒绝好通过样本放在一起构建新模型。

6)聚类法
聚类法不需要借助于任何已知模型进行打分,直接把有表现的好坏样本分为两类,分别计算每一类的的中心点;对于每个拒绝样本,分别计算它到两个中心点的欧式距离,并根据距离进行归类。

5.1.3 如何验证拒绝推断的效果

1)坏账和分箱
拒绝推断的效果验证一般也要根据业务经验来判断,一方面是看坏账率,通过拒绝推断推测出的拒绝样本的坏账率,一般来讲应该达到通过样本的2-4倍,才是合理的;另一方面就是看每个单变量的分箱变化和IV值的变化,一般加入拒绝样本后,单变量的IV值都是提高的。

2)部分通过样本做验证
在执行拒绝推断过程中,我们可以把通过样本分出70%来做拒绝推断模型,剩下的30%来当做验证集(即把这30%的通过样本当做已知表现的拒绝样本,用来验证拒绝推断的准确性)。

3)AB测试
当然最准确的方法还是用事实来说话,所以最准确的验证方法也需要线上表现来验证。可以在业务中开一定比例的灰度,用拒绝推断的模型来做决策,并通过对比通过样本模型效果,来量化拒绝推断模型的提升。

原文链接:https://blog.csdn.net/baidu_39413110/article/details/106430745

7.2 异常原因分析

7.2.1 通过率下降

针对这个场景,其实我们要回答以下问题:

  • 1)具体是具有什么样特征的用户导致了通过率的下降;
  • 2)主要的影响特征具体指哪些;
  • 3)基于通过率需要恢复到之前水平这个目标,策略模型需要如何调整;

分析的思路框架:

1)定位通过率降低的具体时间点&比对的样本(降低前群体,降低后群体)
2)定位拒绝率升高的部分归属哪类规则(准入,反欺诈,黑名单,信用)
3)定位拒绝率升高的具体子规则
4)根据确定的子规则,确立规则对应的特征具体哪个区间导致通过率的下降
5)根据定位到的特征,根据以下2个方向确立决策建议和策略调整方向

  • 方向1(特征在某个渠道,某类用户上比较集中时)
    进一步看进件占比较大的几个渠道,在上述特征上拒绝率差异
    根据找到的渠道和特征,建议前端获客时,尽量避免相应渠道的此类用户
  • 方向2(特征在几乎所有渠道的用户上都有所体现时)
    往往这种情况是公司对应的客群,某个特征整体迁移了,其整个分布已和原先进行策略阈值设定时发生了较大改变,这个时候如果目标是保持通过率恢复到接近原来的水平,则需要考虑重新划定相应特征的阈值,但我们需要控制风险水平不会有太大提升,因此需要此特征结合其他特征(有较强区分度的综合分数,风险评级,历史上表现较好的渠道等)来调整策略

7.2.2 逾期率上升

针对这个场景,其实我们要回答以下问题:

  • 1)具体是具有什么样特征的用户导致了逾期的上升;
  • 2)主要的影响特征有哪些;
  • 3)基于这些特征,策略模型需要如何调整,才能使逾期降下来;

分析的思路框架:

1)定位升高的具体时间点&用于比对的样本(当前时点客群B,之前时点客群A)
2)确定具体的逾期率指标是否因为本身定义或者一些业务操作而导致的变化
  从逾期指标可能影响的相关操作来看,假设上升的指标是入催率,那么首先可能需要考虑对到期用户的触达方式是否出了问题,短信通道是否正常,自动机器人催收是否正常,代扣是否正常等
  从逾期指标本身的口径角度出发,假设上升指标是dpd30+,且此指标口径是dpd30+在保金额/当期剩余在保金额,此时需要考虑分子对应的逾期用户的平均剩余在保和比对时点是否发生较大变化从而导致逾期上升,分母的角度主要是看当期剩余在保和比对时点相比是否发生明显下降;
3)分析逾期样本构成,定位逾期升高的客群大体的客群归属(客群B1);
用于比对的指标为逾期率差异
比对的维度方向,可以从以下角度:
  用户类型:首贷,复贷
  用户来源渠道
  用户类型&用户来源渠道交叉
  vintage上升对应的放款月(主要为了确认促使逾期升高的放款月份归属)
4)找到逾期客群与剩下客群有明显差异的特征
比对对象:当前时点致使逾期上升的客群B1和当前时点剩余客群B2
用于筛选两个客群差异较大的特征的指标:IV(对于y的标记将上述两个客群分别标记为2个类别)
比对的特征类别
  人口属性(性别,年龄,地域,婚育状态等)
  业务属性(分期金额,期数,针对一些特定场景分期,还可从场景本身特征提取一些因子,如汽车分期场景,车龄,车类型,车品牌类型,车价等)
  主要变量(入模和策略的主要变量)
5)结合差异较大特征和客户的客群归属类型,进行策略设定
6)由于分析的样本因为有贷后表现,具有一定滞后性,策略确定好后,可拿较近期的数据按照策略套用一下,以此预估对通过率的影响比率;

7.3 风控模型的冷启动

风控模型的冷启动是指产品刚上线时,没有积累的用户数据,或者用户还没有表现出好坏,此时需要做模型就是一个棘手的问题,常用的方法如下:
1)不做模型,只做规则。凭借自己的业务经验,做一些硬性规则,比如设定用户的准入门槛,考量用户的信用历史和多头风险,而且可以接入第三方提供的反欺诈服务和数据产品的规则。另外可以结合人审来对用户的申请资料做风险评估。
2)借助相同模式产品的数据来建模。 如果两个产品的获客渠道,风控逻辑,用户特征都差不多的话,可以选择之前已上线那个产品所积累的用户来建模,不过在模型上线后需要比较线上用户的特征是否与建模用户有较大的差异,如果差异较大,需要对模型对一些调整。
3)无监督模型+评分卡。这种方法适用于产品上线一段时间后,表现出好坏的用户比较少,但需要做一个模型出来,此时可用线上的申请用户做无监督模型,找出一部分坏样本和好样本,用这些数据来做评分卡模型,当然这种模型准确性是存疑的,需要后续对模型不断迭代优化。

7.4 决策点(cutoff点)设定

规则只是判断用户好坏,而不会像模型会输出违约概率,所以设定决策点时需要考虑到规则的评估指标(精准率,查全率,误伤率,拒绝率),一般模型开发前会设定一个预期的拒绝率,在这个拒绝率下再考量精确率,查全率和误伤率的取舍,找到最佳的平衡点。好的模型能接受更多的好用户,拒绝掉更多的坏用户,也就是提高好坏件比例,所以可事先设定一个预期目标的好坏件比例来选择最佳的决策点。
定义两个决策点,若案件评分低于决策点,则系统自动拒绝,若高于决策点,则系统自动通过;若在两者之间,则转人工。

7.5 模型稳定性

1)在数据预处理阶段可以验证变量在时间序列上的稳定性,通过这个方法筛掉稳定性不好的变量,也能达到降维的目的。筛选的手段主要有:计算月IV的差异,观察变量覆盖率的变化,两个时间点的PSI差异等。
2)异常值的检查,剔除噪声,尤其对于逻辑回归这种对于噪声比较敏感的模型。
3)在变量筛选阶段剔除与业务理解相悖的变量,如果是评分卡,可以剔除区分度过强的变量,这种变量一般不适合放入模型中,否则会造成整个模型被这个变量所左右,造成模型的稳定性下降,过拟合的风险也会增加。
4)做交叉验证,一种是时间序列上的交叉验证,考察模型在时间上的稳定性,另一种是K折随机交叉验证,考察模型的随机稳定性。
5)选择稳定性较好的模型,例如随机森林或xgboost这类泛化能力较好的模型。

7.6 第三方数据评测

1.采购三方数据一般有调研、测试评估、签约和对接四个流程
2.测试评估分为测试样本选取和数据可用性评估两个阶段
3.测试样本选取遵循风险释放性、样本代表性和横向可比性三个原则
4.从查得率、稳定性和有效性评估数据可用性
5.黑名单类数据评测指标有五个:查得率、覆盖率、误拒率、无效差异率和有效差异率
6.如果有效差异率、无效差异率都很高,表面该数据源定义是一种广撒网式的黑名单,黑名单质量不高

7.7 做评分卡中为什么要进行WOE转化?

1)更好的解释性,变量离散化之后可将每个箱体映射到woe值,而不是通常做one-hot转换。
2)woe化之后可以计算每个变量的IV值,可用来筛选变量。
3)对离散型变量,woe可以观察各个level间的跳转对odds的提升是否呈线性。
4)对连续型变量,woe和IV值为分箱的合理性提供了一定的依据,也可分析变量在业务上的可解释性。
5)用woe编码可以处理缺失值问题,提升模型的鲁棒性。
6)逻辑回归属于广义线性模型,表达能力受限,单变量变量离散化后,为每个变量都引入单独的权重,相当于为模型引入了非线性,提升表达能力。
不使用哑变量而使用WOE的原因:对于逻辑回归来说,one-hot encoding输出的矩阵太稀疏了

智能风控研究报告 智能风控研究报告全文共99页,当前为第1页。 前言 风控管理是金融活动的核心。我国金融产业的发展表现出很强的信贷驱动属性,各类以新技术支撑的智能风控产品服务,已成为不管是 传统信贷业务,还是互联网信贷业务的重要支撑工具。在金融科技公司服务银行业中预测2020年金融科技市场规模 将达到245亿元,其中智能风控75.9亿元,占比31%,智能风控市场规模巨大,是未来金融科技公司集中发力的市场。 目前市场上已有一些风控相关的研究报告,总结下来可以分为两类:一类是以大数据为主要研究对象的大数据风控,一类是针对个人信 贷业务风控开展研究。第一类报告中讨论的大数据只是智能化技术的一种,并 完全等同;第二类报告研究范围局限于个人信贷业务, 而在信贷业务中,个人信贷和企业信贷的市场需求和风控逻辑完全不同,企业信贷风控的领域被过分忽视。认为业内需要一份 定义明确、研究范围清晰全面、有翔实落地案例作为行业发展现状佐证的研究报告,因此,推出了《2018中国智能风控研究报告》。 《2018中国智能风控研究报告》专注于信贷业务的智能风控研究,基于大量桌面研究、企业拜访和专家调研,明确智能风控定义,分 析宏观背景如何推动智能风控产业发展,了解智能风控核心技术、产品与服务流程和应用价值,根据实际发展存在的问题,预测智能 发展趋势。 与市场上已有的大数据风控报告相比,报告明确智能风控定义,研究范围清晰;从个人信贷和企业信贷两个模块分别分析智能风控的技 术实现和应用落地;通过问卷调查的形式,揭示智能风控企业发展现状。由于专业领域和视野有限,本报告难免有错漏或不当之处,敬 请读者批评指正。 2 智能风控研究报告全文共99页,当前为第2页。 目录 CO N T E N T S Part1.智能风控发展现状及背景 风控发展历程及现状 智能风控定义解读及发展背景 Part2.智能风控企业现状调查研究 智能风控产业生态分布 智能风控企业图景 智能风控企业调查解读 Part3.智能风控产品及服务应用——个人篇 贷前:数据整合快速规避险 贷中:精细化管理有效拦截险 贷后:智能优化贷前、贷中策略 需求端应用:数据和技术互补推动需求端智能化布局 Part4.智能风控产品及服务应用——企业篇 Part5.智能风控发展挑战与趋势 智能风控发展挑战 智能风控发展趋势 智能风控研究报告全文共99页,当前为第3页。 智能风控发展现状及背景 4 智能风控研究报告全文共99页,当前为第4页。 1.1 风控发展历程及现状 Part 1 智能风控发展现状及背景 5 智能风控研究报告全文共99页,当前为第5页。 Part 1 智能风控发展现状及背景 风控发展历程及现状 金融科技进入智能阶段,智能风控是未来三年金融科技公司集 中发力的市场 回顾金融科技产业经历了电子化、信息化、网络化、移动化时代,随着机器学习、自然语言处理、知识图谱等技术的发展,算法、 数据、硬件处理能力不断提升,各类智能金融应用出现,金融科技已逐步进入智能阶段。 认为电子化和信息化只是作为一种工具,为金融产业的基础设施升级提供了条件,而网络化、移动化为金融业务的渠道和 实现方式带来了革新。央行2011年颁发第三方支付牌照是金融网络化的标志性事件,这一年成为金融与科技深度融合的开始。 发布的金融科技公司服务银行业中,已经对金融科技公司服务银行的八大场景(金融云、智能营销、智能 、智能审计、智能投顾、智能投研、智能客服、生物认证)进行分析,认为智能风控是未来三年金融科技公司集中发力的市场。 6 现金贷平台 开始大规模 转型金融科 技公司,严 监管持续 2011 2012 2013 2014 2015 2016 2017 2018 央行联合十部委正式发布 了《关于促进互联网金融 健康发展的指导意见》, 网贷监管开始落地 小微金服(现蚂 蚁金服)推出余 额宝,成为普惠 金融最典型代表 网络借贷平台快 速发展,平安陆 金所推出网贷业 务,传统银行开 始搭建一站式金 融服务平台 中国人民银行成立金融 科技委员会,现金贷迎 来正式监管文件,五大 行开始陆续和BATJ合作 第三方支付牌照正 式发布,央行首批 27家支付企业支付 业务许可证 金融科技元年, Fintech首次被 列入十三五规划, 中国互联网金融 协会成立 2011-2018金融科技大事件及百度搜索指数 国内首家民营银 行——微众银行 成立,各大银行 开始成立互联网 金融部门 智能风控研究报告全文共99页,当前为第6页。 Part 1 智能风控发展现状及背景 风控发展历程及现状 贷前审核、贷中监和贷后管理等环节都存在不同程度的痛点, 需要金融科技尽快落实在风控环节中以实现智能化 7 从人工审核和专家经验到机器 自动化审核的转变 授信依据从央行征信等结构
1. 营销获客 2. 贷前风控 2.1 贷前审查 2.2 反欺诈 2.3 风控策略 2.4 风控建模 2.5 数据管理 风控总监训练营 ......................................................................................................792 4 节课玩转信用评分卡模型....................................................................................792 如何搭建虚拟信用卡风控体系 ...............................................................................792 风控大牛手把手教你搭建企业级信用评分模型.....................................................792 2 大维度全面ᨀ升催收效率....................................................................................792 3 堂课,从 0-1 掌握基于数据驱动的险定价核心...............................................792 如何打造现金贷产品的风控体系?........................................................................792 解密 P2P 网贷备案——专家教你如何正确应对备案..............................................793 区块链的前世今生及其应用 ...................................................................................793 区块链热潮下不可不知的法律险:法律专家权威解读区块链、代币等案例与法律 分析 .........................................................................................................................793 牌照决定生死,现金贷及 P2P 如何拿牌?............................................................793
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值