【数学建模】-多元线性回归分析

本文探讨了多元线性回归分析,包括回归的思想、相关性与因果性的区别、自变量和因变量的选择。回归分析旨在识别重要变量、判断相关性方向并估计权重。介绍了数据的横截面、时间序列和面板数据类型,以及一元线性回归中的线性理解、回归系数解释和内生性问题。同时,讨论了何时对变量取对数的决策,并提供了一个电商平台婴幼儿奶粉销售数据的回归分析实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


学习来源:清风老师
回归分析的任务就是,通过研究 自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去 预测Y的目的。
常见的回归分析有五类: 线性回归、0‐1回归、定序回归、计数回归和生存回归,其划分的依据是因变量Y的类型。

回归的思想

回归分析:研究X和Y之间相关性的分析。

相关性

相关性 ≠ 因果性

在绝大多数情况下,我们没有能力去探究严格的因果关系,所以只好退而求其次,改成通过回归分析,研究相关关系

因变量Y
  • 经济学家研究经济增长的决定因素,那么Y可以选取GDP增长率(连续数值型变量)。
  • P2P公司要研究借款人是否能按时还款,那么Y可以设计成一个二值变量,Y=0时代表可以还款,Y=1时代表不能还款(0‐1型变量)。
  • 消费者调查得到的数据(1表示非常不喜欢,2表示有点不喜欢,3表示一般般,4表示有点喜欢,5表示非常喜欢)(定序变量)。
  • 管理学中RFM模型:F代表一定时间内,客户到访的次数,次数其实就是一个非负的整数。(计数变量)
  • 研究产品寿命、企业寿命甚至是人的寿命(这种数据往往不能精确的观测,例如现在要研究吸烟对于寿命的影响,如果选取的样本中老王60岁,
    现在还活的非常好,我们不可能等到他去世了再做研究,那怎么办呢?直接记他的寿命为60+,那这种数据就是截断的数据)(生存变量)
自变量X

回归分析的任务就是,通过研究X和Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。

回归分析的使命

使命1:回归分析要去识别并判断:哪些X变量是同Y真的相关,哪些不是。统计学中有一个非常重要的领域,叫做“变量选择”。(逐步回归法)
使命2:去除了那些同Y不相关的X变量,那么剩下的,就都是重要的、有用的X变量了。接下来回归分析要回答的问题是:这些有用的X变量同Y的相关关系是正的呢,还是负的?
使命3:在确定了重要的X变量的前提下,我们还想赋予不同X不同的权重,也就是不同的回归系数,进而我们可以知道不同变量之间的相对重要性。
第一、识别重要变量;
第二、判断相关性的方向;
第三、要估计权重(回归系数)。

回归分析的分类

在这里插入图片描述

数据的分类

横截面数据:在某一时点收集的不同对象的数据。
例如:
(1)我们自己发放问卷得到的数据
(2)全国各省份2018年GDP的数据
(3)大一新生今年体测的得到的数据
时间序列数据:对同一对象在不同时间连续观察所取得的数据
例如:
(1)从出生到现在,你的体重的数据(每年生日称一次)。
(2)中国历年来GDP的数据。
(3)在某地方每隔一小时测得的温度数据。
面板数据:横截面数据与时间序列数据综合起来的一种数据资源。
例如:
2008‐2018年,我国各省份GDP的数据。
在这里插入图片描述
数据的收集

一元线性回归

在这里插入图片描述

对于线性的理解

在这里插入图片描述

回归系数的解释

在这里插入图片描述

内生性的探究

在这里插入图片描述

包含了所有与y相关,但未添加到回归模型中的变量
如果这些变量和我们已经添加的自变量相关,则存在内生性

内生性的蒙特卡罗模拟

在这里插入图片描述

%% 蒙特卡洛模拟:内生性会造成回归系数的巨大误差
times = 300;  % 蒙特卡洛的次数
R = zeros(times,1);  % 用来储存扰动项u和x1的相关系数
K = zeros(times,1);  % 用来储存遗漏了x2之后,只用y对x1回归得到的回归系数
for i = 1: times
    n = 30;  % 样本数据量为n
    x1 = -10+rand(n,1)*20;   %
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋努力的野指针

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值