miniImagenet数据集的结构为:所有的照片放在一个文件夹中,另外有三个csv文件分别是:train.csv,val.csv,test.csv,三个csv文件都有两列,第一列是文件名,第二列是标签。我在使用数据集时,把train数据,test数据,val数据分别都保存到对应的标签下。
处理后的目录结构如下:
具体处理代码:
import csv
import os
from PIL import Image
train_csv_path="C:/Users/MMatx/Desktop/研究生/mini-imagenet/mini-imagenet/train.csv"
val_csv_path="C:/Users/MMatx/Desktop/研究生/mini-imagenet/mini-imagenet/val.csv"
test_csv_path="C:/Users/MMatx/Desktop/研究生/mini-imagenet/mini-imagenet/test.csv"
train_label={}
val_label={}
test_label={}
with open(train_csv_path) as csvfile:
csv_reader=csv.reader(csvfile)
birth_header=next(csv_reader)
for row in csv_reader:
train_label[row[0]]=row[1]
with open(val_csv_path) as csvfile:
csv_reader=csv.reader(csvfile)
birth_header=next(csv_reader)
for row in csv_reader:
val_label[row[0]]=row[1]
with open(test_csv_path) as csvfile:
csv_reader=csv.reader(csvfile)
birth_header=next(csv_reader)
for row in csv_reader:
test_label[row[0]]=row[1]
img_path="C:/Users/MMatx/Desktop/研究生/mini-imagenet/mini-imagenet/images"
new_img_path="C:/Users/MMatx/Desktop/研究生/mini-imagenet/mini-imagenet/ok"
for png in os.listdir(img_path):
path = img_path+ '/' + png
im=Image.open(path)
if(png in train_label.keys()):
tmp=train_label[png]
temp_path=new_img_path+'/train'+'/'+tmp
if(os.path.exists(temp_path)==False):
os.makedirs(temp_path)
t=temp_path+'/'+png
im.save(t)
# with open(temp_path, 'wb') as f:
# f.write(path)
elif(png in val_label.keys()):
tmp = val_label[png]
temp_path = new_img_path + '/val' + '/' + tmp
if (os.path.exists(temp_path) == False):
os.makedirs(temp_path)
t = temp_path + '/' + png
im.save(t)
elif(png in test_label.keys()):
tmp = test_label[png]
temp_path = new_img_path + '/test' + '/' + tmp
if (os.path.exists(temp_path) == False):
os.makedirs(temp_path)
t = temp_path + '/' + png
im.save(t)
涉及到的python知识:
1、python独写csv文件
使用pythonI/O读取csv文件是按照行读取,每一行都是一个List列表,可以通过使用List列表带获取每一行每一列的元素
2、python判断文件/目录是否存在
(1)判断文件是否存在:os.path.exists(path)
(2)新建一个目录:os.makedirs(path)
3、将图片保存在新的文件夹
使用 fromPIL import Image
img=Image.open(path)
img.save(new_path)
4、python中自带的glob支持文件的通配检索
关于模型的训练,数据集的加载,resnet模型的使用,
可以看另一篇博客:https://blog.csdn.net/Smiler_/article/details/117472023