LeetCode:633. 平方数之和

该博客介绍了一个使用平方根函数优化的算法来解决判断是否存在两个整数,其平方和等于给定非负整数c的问题。通过在1到sqrt(c)之间枚举整数i,并计算剩余部分bb,再判断bb是否为另一个整数的平方,从而高效地得出答案。示例中展示了对于c等于5和3的情况,分别返回true和false的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:添加链接描述
给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c 。

示例 1:

输入:c = 5
输出:true
解释:1 * 1 + 2 * 2 = 5

示例 2:

输入:c = 3
输出:false

思路:

很简单,通过sqrt函数降低时间复杂度进行枚举判断

class Solution {
public:
    bool judgeSquareSum(int c) {
        if(c==0) return true;
        int f=0;
        for(int i=1;i<=sqrt(c);i++){
            int bb=c-i*i;
            int tmp=sqrt(bb);
            if(tmp*tmp==bb){
                f=1;
                break;
            }

        }
        return f;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值