浅显易懂——泰勒展开式

第一次见到泰勒展开式的时候,我是崩溃的。泰勒公式长这样:


好奇泰勒是怎么想出来的,我想,得尽量还原公式发明的过程才能很好的理解它。

首先得问一个问题:泰勒当年为什么要发明这条公式?

因为当时数学界对简单函数的研究和应用已经趋于成熟,而复杂函数,比如:这种一看就头疼的函数,还有那种根本就找不到表达式的曲线。除了代入一个x可以得到它的y,就啥事都很难干了。所以泰勒同学就迎难而上!决定让这些式子统统现出原形,统统变简单。

让我们沿着泰勒同学(假装泰勒是这么想的)的思路来:

要让一个复杂函数变简单,能不能把它转换成别的表达式?比如函数,怎么看都看不出思路,怎么办呢?我们先不要一口吃掉它,可以先从它最小的部分算起,比如说一个点。可以得到:。暂时看不出有什么规律。

那就继续增大研究的对象,比如说的领域。可以得到:,其中。好像还是看不出什么规律?然鹅,聪明的泰勒早以看穿一切。

因为,所以原式可以化为:。所以泰勒想是不是这样:,即。嗯先假设是这样,然后泰勒同学决定验证一下。

先求个导试试:。对了,泰勒同学很激动!继续求:,咦,不对了。那说明有了一些问题。仔细分析一下问题在哪呢?

我们可以尝试把拆开来:,然后分析他们之间有什么共性。

让我们对进行求导看看:

一阶导:,嗯多了个

二阶导:,多了。好像有点规律了,

......

阶导:

阶导:0。是一个常数,所以对求导就是0了。

这里规律很明显了,阶导以后都是0!但是阶导以前呢?还是蛮复杂的,不过不用担心,因为,即,所以阶导以前也都是0,而阶导就是。perfect!

这样就很清晰了:对阶导为。但是我们想要的值是,那就把给除掉!

即乘于一个,所以,证明完毕。泰勒同学很开心!

泰勒展开是一种数学方法,用于将一个函数在某个点处展开成一个无限多项式的形式。这个展开的过程可以通过逐步计算函数的各阶导数来实现。在展开过程中,可以使用泰勒公式来表示展开点附近的函数值,并利用展开式的各项系数来逼近原始函数在展开点的邻域内的行为。 根据引用的描述,如果将函数f(x)在展开点x=a处进行泰勒展开,那么展开式只能反映曲线从其奇点开始到展开点之间的部分,对于其他区域的曲线形状是无法得知的。这意味着,泰勒展开只能利用展开点附近的信息来逼近原始函数的形状。 引用中提到,泰勒展开的出现是为了处理复杂函数,尤其是那些难以用简单的表达式表示的函数。通过将这些复杂函数用泰勒展开形式表示,可以使其更加简化和易于处理。 在泰勒展开过程中,使用二项式来逼近原始函数。这种二项式叠加的方式并没有特殊的含义,只是因为它是可行的。可以将一个函数在频域上用傅里叶变换展开,这也是一种可能的方式。无论是哪种方式,重要的是如何确定二项式的系数。这些系数与函数的各阶导数有关,因此可以使用待定系数法来求解。 总结而言,泰勒展开是一种数学方法,用于将函数在某个点处展开成一个无限多项式的形式。展开式只能反映展开点附近的部分曲线形状,对其他区域的曲线形状无法得知。通过使用二项式和待定系数法,可以逼近原始函数的形状。这种展开方法在处理复杂函数或无法用简单表达式表示的函数时非常有用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [泰勒公式的展开细节解析](https://blog.csdn.net/dog250/article/details/76697167)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [浅显易懂——泰勒展开式](https://blog.csdn.net/xinbolai1993/article/details/83414870)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值