【AI学习】概念了解

2,VRAM(Video Random Access Memory,视频随机存取存储器)

用于图形处理相关应用的高速随机存取存储器,它主要被集成在图形处理器(GPU)或与 GPU 紧密配合使用,其核心功能是存储图形数据,比如图像的像素信息、纹理数据、渲染指令等,为 GPU 快速处理图形任务提供数据支持,保障图像、视频以及 3D 场景等内容能流畅、高质量地呈现出来。

3,推理引擎

基于已训练好的模型(比如深度学习中的神经网络模型、规则引擎中的规则集合等),对新输入的数据进行处理,以得出相应的推理结果。
常见于人工智能领域:

  1. 图像识别中根据输入图像判断物体类别
    自动驾驶领域,车辆需要实时对摄像头捕捉到的路况图像、雷达等传感器收集的数据进行分析推理,以便及时做出决策,如刹车、转向。
    人脸识别。
  2. 自然语言处理里分析文本语义
    智能语音助手。
  3. 医疗影像诊断领域
    对于 X 光、CT 等大量的医疗影像,通过加速推理引擎,能快速辅助医生判断影像中是否存在病变、疾病的可能类型等关键信息,节省医生诊断时间,提高诊断准确率。

4,量化蒸馏模型

是一种融合了模型量化与知识蒸馏技术的方法,旨在在降低模型计算成本、提高推理效率的同时,尽量保留模型的准确性和泛化能力。

1)模型量化

将模型中原本以高精度数据格式(如 32 位浮点型)表示的参数、激活值等转换为低精度的数据格式(如 8 位整型或更低)的操作。从而减少模型的存储体积以及计算时所需要的资源消耗。

2)知识蒸馏

是一种模型压缩与优化的方法,它利用一个已经训练好的、性能强大的 “教师模型”,将其蕴含的知识 “传授” 给一个相对简单、规模较小的 “学生模型”。具体操作上,通常是让 “学生模型” 去学习 “教师模型” 输出的软标签(概率分布形式的标签)以及中间层的特征表示等信息,而不仅仅是传统的硬标签(如分类任务中明确的类别标签)。
在很多情况下,复杂的大型模型虽然准确性高,但存在计算资源消耗大、推理速度慢等问题,不利于在实际应用中广泛部署。知识蒸馏通过这种 “以大带小” 的方式,使得 “学生模型” 能在一定程度上吸收 “教师模型” 的优势知识,从而在减小模型规模的同时,尽可能保持较高的准确率和良好的泛化能力,更易于在资源受限的环境下(如边缘计算设备、物联网设备等)使用。

3)优化量化与蒸馏方法

研究人员会不断探索更精细、更有效的量化策略以及知识蒸馏的方式,比如开发出针对不同类型模型(如卷积神经网络、循环神经网络等)更适配的量化算法,以及找到能让学生模型更好地从教师模型中汲取知识的蒸馏架构和训练机制,进一步提升量化蒸馏模型的整体性能。

5, Transformer 模型

6,Embedding 模型(嵌入模型)

将离散符号(如文本、图像、用户行为等)映射到连续向量空间的技术。其核心目标是通过低维向量(嵌入向量)保留原始数据的语义、结构或关系。

1)原理

  1. 降维与特征学习
    将高维稀疏数据转换为低维稠密向量,减少计算复杂度。
    通过深度学习或统计方法学习数据中的潜在特征(如语义相似性)。
  2. 语义表示
    向量空间中相近的点表示语义相关(如 “国王” 与 “王后” 在词向量空间中距离较近)

2)场景

  1. 自然语言处理(NLP)
    文本分类、情感分析、问答系统、机器翻译。
  2. 推荐系统
    用户与物品嵌入向量的相似度计算(如协同过滤)。
  3. 计算机视觉(CV)
    图像检索、目标检测、图像生成(如扩散模型)。
  4. 跨模态任务
    图文匹配、视频理解、语音识别

3)常见模型/算法

模型类型代表算法 / 模型特点
词嵌入Word2Vec(CBOW/Skip-gram)基于上下文预测词语,捕捉局部语义关联。
GloVe结合全局词频统计,优化语义相似性。
BERT/Transformer基于自注意力机制,捕捉长距离依赖,支持上下文动态词向量。
图像嵌入CNN(如 ResNet)将图像特征映射到向量空间,用于图像检索或分类。
多模态嵌入CLIP、FLAVA联合学习文本和图像的嵌入空间,支持跨模态检索与生成。
图嵌入Node2Vec、GraphSAGE保留图结构中节点的邻域关系,用于社交网络或知识图谱分析。

9,Module Context Protocol(MCP,模块上下文协议)

由Anthropic提出的一种开放标准,是多个AI系统之间的一种通信协议,能够保障AI系统与各个数据源之间提供统一、标准化且安全的数据连接方式。

15,联邦计算(联邦学习)

用于解决数据隐私保护与数据协作利用之间的矛盾。它允许不同的参与方(如各个企业、机构等)在不共享本地原始数据的前提下,共同训练机器学习模型,从而整合各方的数据价值,提升模型的性能和泛化能力。

1)工作原理

  1. 数据分布
    参与联邦计算的各个数据源分布在不同的参与方本地,这些数据往往具有不同的特征分布、数据规模等情况,并且出于隐私等因素不能直接汇聚到一起。
  2. 模型分发
    由一个协调方(可以是发起联邦学习的机构等)将初始的机器学习模型(例如神经网络模型、决策树模型等)分发给各个参与方。
  3. 本地训练
    各个参与方利用本地的数据,按照统一的训练规则和算法,对收到的模型进行训练,这个过程中只会使用本地数据更新模型参数,不会对外传输原始数据。
  4. 参数聚合
    各个参与方将训练好的模型参数(通常是经过加密等隐私保护手段处理后的)上传至协调方,协调方再对这些参数进行聚合汇总,得到更新后的模型参数,进而更新整个模型。
  5. 迭代优化
    经过多次上述的本地训练和参数聚合步骤,不断优化模型,直到达到预定的训练目标(如准确率达到一定标准、损失函数值足够小等)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值