【栅格数据】中国土地利用遥感监测数据(1980-2023年)

中国具有复杂的自然环境背景和广阔的陆地面积,其土地利用变化不仅对国家发展,也对全球环境变化产生着深刻影响,而中国的土地利用遥感监测数据对于研究土地利用变化、城市发展、环境保护等领域具有重要意义。

图4.png


一、中国土地利用遥感监测数据的介绍

中国科学院在国家资源环境数据库基础上,以美国陆地卫星 Landsat 遥感影像数据作为主信息源,通过人工目视解译,建立了国家尺度 1:10 比例尺多时期土地利用/土地覆盖遥感监测数据库(CNLUCC),研究者可利用这些数据分析中国土地利用变化趋势、生态环境变化及城市化进程等。


二、数据范围及年份

本数据为栅格数据,数据范围包含全国,涵盖了1980年至2023年的多个时间节点,具体年份包括:1980年、1990年、1995年、2000年、2005年、2008年、2010年、2013年、2015年、2018年、2020年和2023年。


三、分辨率及坐标

数据的空间分辨率为1KM,采用Krasovsky_1940_Albers坐标系,以确保数据的精确性和统一性。


四、测算方式

该数据集采用二级分类系统进行数据测算。一级分类根据土地资源及其利用属性进行划分,主要包括耕地、林地、草地、水域、建设用地和未利用土地六个大类;二级分类则根据土地资源的自然属性,将土地进一步细分为23个不同的类型。


五、数据来源

该数据来自中国科学院资源环境科学与数据中心。


六、参考文献

徐新良等. 土地利用/覆被变化时空信息分析方法及应用. 北京:科学技术文献出版社,2014, 90-108。


七、数据概览

原始数据下载后用ArcGIS打开,然后打开系统属性进行唯一值显示,即可看到分类。

图3.png

图2.png

八、全部内容下载链接https://download.csdn.net/download/T0620514/90225417

### 土地利用遥感数据的下载、处理与分析工具 #### 数据下载 用户可以通过访问专业的地理空间数据平台来获取所需的遥感数据。例如,“地理空间数据云”网站提供了丰富的遥感影像资源,支持用户通过高级搜索功能指定下载区域范围和传感器类型[^2]。该平台允许用户注册并登录账户后,按照需求筛选 Landsat 系列或其他卫星的数据。 在选择遥感影像时需要注意以下几点:优先选取云量较小(建议低于5%)的图幅以减少干扰;对于长期变化监测项目,应尽量保持每采集时间的一致性,尤其是在植被覆盖显著变化的地区,推荐选用夏季或秋季的影像以便更准确地识别地物类别[^4]。 #### 数据预处理 完成数据下载之后,通常需要借助专门软件对原始遥感影像进行一系列前期准备工作。以下是几个关键步骤及其所使用的工具: - **波段组合** 使用 ENVI 的 `Layer Stacking` 功能可将不同波段合并成单个多光谱图像文件,便于后续操作[^3]。 - **影像裁剪** 利用 ENVI 中的 `Subset Data from ROIs` 工具可以根据预先定义的研究区边界快速截取感兴趣部分,从而缩小计算规模并聚焦目标区域[^3]。 - **影像拼接** 当研究范围跨越多个景别时,则需执行无缝镶嵌流程。这一步可通过调用 ENVI 提供的 `Seamless Mosaic` 方法轻松达成。 #### 图像分类 为了从经过初步加工后的遥感图片中提取有用信息,必须实施有效的分类算法。ENVI 支持多种监督学习技术用于此目的,其中包括但不限于随机森林(Random Forests)[^3] 和人工神经网络(Artificial Neural Networks)等先进模型。创建训练样本集合是一项基础工作,它涉及手动标注各类典型地面物体实例作为参考标准。随后,在设置好相应超参数配置项的前提下启动自动划分进程即可获得最终成果地图。 另外值得注意的是,由于自然环境复杂多样可能导致某些特定场景下的判读结果存在一定程度上的不确定性或者误差现象发生,因此还需要进一步采取措施改善输出质量。例如针对可能出现的小面积杂乱斑块问题,可以在 ArcGIS 平台内部运用平滑滤镜手段加以修正优化后再转化为矢量格式存储起来方便后期统计分析用途[^3]。 #### 时间序列分析 当涉及到长时间跨度内的土地覆被变迁状况评估任务时,构建转换矩阵成为不可或缺的一个环节。具体做法包括依次导入各份对应的矢量化产品至 GIS 软件环境中统一管理,并借助内置函数完成交叉叠加运算得到共同要素记录列表形式表达的结果集。最后导出到电子表格应用程序里制作直观易懂的变化趋势图表展示出来辅助决策制定过程。 ```python import arcpy # Example Python script using arcpy to convert raster data into vector format. arcpy.RasterToPolygon_conversion(in_raster="classified_image", out_polygon_features="output_shapefile", simplify="SIMPLIFY") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

T0620514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值