UVa 11609 Teams (组合数学)

本文详细解析了UVa11609 Teams这道题目的解题思路,通过组合数学的方法得出求解公式,并提供了一段简洁高效的C++代码实现。该题要求从n个人中选取队伍并指定队长,统计不同方案的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UVa 11609 Teams


题目大意:

n(1n109)个人,选一个或者多个人参加比赛,其中一名当队长.两种方案相同,当且仅当人员组成和队长相同,问有多少种方案.
输出方案数除以1000000007的余数.

题目分析:

(推个式子都要推半天,吃枣药丸)

当选择1个人的时候有C1n种方案,每种方案队长安排有1种.
当选择2个人的时候有C2n种方案,每种方案队长安排有2种.

ans=1C1n+2C2n+...+nCnn
=ni=1iCin

对于任意i,有

iCin=in!i!(ni)!
=n(n1)!(i1)![(n1)(i1)]!
=nCi1n1

所以

ans=nni=1Ci1n1
=n2n1

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

const int MOD=1000000007;

int pow_mod(int x,int y)
{
    int ret=1;
    while(y>0) {
        if(y&1) ret=1ll*ret*x%MOD;
        x=1ll*x*x%MOD;y>>=1;
    }
    return ret;
}

int main()
{
    int T,kase=0,n;
    scanf("%d",&T);
    while(T--) {
        scanf("%d",&n);
        printf("Case #%d: %lld\n",++kase,1ll*n*pow_mod(2,n-1)%MOD);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值