今天这篇文章将给大家分享一个电商数据分析的案例。
下面我们先来简单了解一下数据。
01
数据信息
字段介绍
Unnamed: 行号
event_time:下单时间
order_id:订单编号
product_id:产品标号
category_id :类别编号
category_code :类别
brand :品牌
price :价格
user_id :用户编号
age :年龄
sex :性别
local:省份
02
分析目的
通过分析销售数据来了解在线销售业务的消费情况,分析用户消费数据来分析用户的消费行为,为用户推荐相匹配的商品。
分析问题
店铺销售情况
每月成交额
每月销售金额
每月消费人数
每月订单数量
每月客单价
不同省份用户数量
不同省份订单数量
不同省份成交金额
订单数随星期分布
订单随小时分布
用户消费行为
用户消费次数
用户消费金额
消费次数与消费金额关系
用户购买周期
新用户、活跃用户、不活跃用户、回流用户、回流率
复购率和回流率
消费人群分层情况
按性别分析
按年龄段分析
按喜好品牌分析
03
结论先行
1、销售金额、订单量、消费人数、客单价在清明小长假、五一小长假、暑假、开学季、十一小长假,几个假期节点表现不错,尤其是开学季的情况最好,在几个关键的节点开始前,店铺一定要提前储备库存,保证货源。
2、北上广销售金额、订单量、消费人数、客单价都优于其他省份,湖南省消费人数少,但是客单价、订单量都表现优异,湖南省潜力巨大,因此要加大对湖南省的宣传力度,增加湖南省的消费人数。
3、75%的消费人群购买力不高,对30岁以下的人群主要推荐亲民价格的商品。
4、40-50岁的人群购买力高,而且男性对高价格的商品购买力强,因此给40-50岁的男性推荐高价格的商品,对女性推荐较高价格的商品。
5、多数用户至少消费了两次,且消费金额与购物次数有较强的正相关,用户消费次数越多销售额越大。可在8天、28天对用户进行召回,引导客户消费。
6、订单集中在早晨,8点到13点是消费高峰期,这段时间要注意维持好网站的稳定性。
7、店铺可以在1-4月份减少营业人员,5-11月增加营业人员,应对销售高峰期。
接下来给大家介绍一下分析的过程,包括数据嗅探、数据清洗等步骤。
04
数据分析过程
数据嗅探
#导入第三方库
import os
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
#设置中文编码和负号的正常显示
#plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#导入数据
df=pd.read_csv('./电子产品销售分析.csv')
df.head()
输出结果: