算法----欧拉算法

在计算固体力学中多用Lagrange 列式,计算流体力学用Euler列式,但在解决流体-固体耦合问题时需要一种将两种方法的优点结合起来的算法,即Arbitrary Lagrange-Euler算法,简称为ALE算法。ALE最早是为了解决流体动力学问题而引入的,并使用有限差分方法。Donea,Belytschko等人分别将ALE法引入有限元当中,用于求解流体于结构相互作用问题。Hughes等人建立了ALE描述的运动学理论,并使用有限元法解决了粘性不可压缩流体和自由表面流动问题。随着ALE技术的不断完善,一些专业计算软件开始加入ALE功能,LS—Dyna是目前具有较成熟的ALE算法的大型通用有限元程序,程序中最先采用简化ALE,后来发展到多物质ALE,其应用领域主要是流固耦合方面的计算。

欧拉算法

  微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值,这个过程称为离散化。实现离散化的基本途径是用向前差商来近似代替导数,这就是欧拉算法实现的依据。欧拉(Euler)算法是数值求解中最基本、最简单的方法,但其求解精度较低,一般不在工程中单独进行运算。所谓数值求解,就是求问题的解y(x)在一系列点上的值y(xi)的近似值yi。对于常微分方程:

  dy/dx=f(x,y),x∈[a,b]

  y(a)=y0

  可以将区间[a,b]分成n段,那么方程在第xi点有y'(xi)=f(xi,y(xi)),再用向前差商近似代替导数则为:(y(xi+1)-y(xi))/h=f(xi,y(xi)),在这里,h是步长,即相邻两个结点间的距离。因此可以根据xi点和yi点的数值计算出yi+1来:

  yi+1= yi+h*f(xi,yi),i=0,1,2,L

  这就是欧拉格式,若初值yi+1是已知的,则可依据上式逐步算出数值解y1,y2,L。

  为简化分析,人们常在yi为准确即yi=y(xi)的前提下估计误差y(xi+1)-yi+1,这种误差称为局部截断误差。

  如果一种数值方法的局部截断误差为O(h^p+1),则称它的精度是p阶的,或称之为p阶方法。欧拉格式的局部截断误差为O(h^2),由此可知欧拉格式仅为一阶方法。

  欧拉公式:

  y(xi+1)=yi+h*f(xi,yi)

  且xi=x0+i*h (i=0,1,2,…,n-1)

  局部截断误差是O(h^2)

  

改进的欧拉算法

  先用欧拉法求得一个初步的近似值,称为预报值,然后用它替代梯形法右端的yi+1再直接计算fi+1,得到校正值yi+1,这样建立的预报-校正系统称为改进的欧拉格式:

  预报值 y~i+1=yi+1 + h*f(xi,yi)

  校正值 yi+1=yi+(h/2)*[f(xi,yi)+f(xi+1,y~i+1)]

  它有下列平均化形式:

  yp=yi+h*f(xi,yi)

  且 yc=yi+h*f(xi+1,yp)

  且 yi+1=(xp+yc)/2

  它的局部截断误差为O(h^3),可见,改进欧拉格式较欧拉格式提高了精度,其截断误差比欧拉格式提高了一阶。

  注:欧拉法用差商 [y(xi+1)-y(xi)]/h近似代替y(xi)的导数,局部截断误差较大;改进欧拉法先用欧拉法求出预报值,再利用梯形公式求出校正值,局部截断误差比欧拉法低了一阶,较大程度地提高了计算精度。

 

 

改进欧拉算法

#include<iostream.h>
#define N 20

void ModEuler(float (*f1)(float,float),float x0,float y0,floatxn,int n)
{
int i;
float yp,yc,x=x0,y=y0,h=(xn-x0)/n;
cout<<"x[0]="<<x<<'t'<<"y[0]"<<y<<endl;
for(i=1;i<=n;i++)
{
  yp=y+h*f1(x,y);
   x=x0+i*h;
  yc=y+h*f1(x,yp);
  y=(yp+yc)/2.0;
  cout<<"x["<<i<<"]="<<x<<"   y["<<i<<"]="<<y<<endl;
}
}
void main()
{

float xn=5.0,x0=0.0,y0=2.0;
float f1(float ,float);
ModEuler(f1,x0,y0,xn,N);
}
float f1(float x,float y)
{
return -x*y*y;
}

递归牛顿-欧拉法是一种在力学系统动力学分析中常用的近似解法,它用于计算刚体运动方程的时间积分。在MATLAB中,实现这种算法通常涉及函数的递归调用以及向量化的处理。 以下是一个简单的MATLAB代码示例,展示如何使用递归牛顿-欧拉算法求解刚体的动力学模型: ```matlab function [theta, omega] = newtonEulerRecursion(q, qdot, dt, M, C, G) % 输入参数: % q:关节位置向量 % qdot:关节速度向量 % dt:时间步长 % M:转动惯量矩阵 % C:阻尼矩阵 % G:力矩向量 % 初始条件 theta(1) = q; omega(1) = qdot; for t = 2:length(q) % 旋转矩阵R(q(t)) R = skew(qdot(t-1)); % 使用skew()函数得到转角的旋转向量 % 计算当前时刻的速度和加速度 v = R * omega(t-1) + qdot(t); a = inv(M) * (-C * v - G); % 更新角度和角速度 theta(t) = theta(t-1) + dt * v; omega(t) = omega(t-1) + dt * a; end end % 函数skew()定义 function Sk = skew(theta) Sk = zeros(3,3); Sk(1,2) = -theta(3); Sk(1,3) = theta(2); Sk(2,1) = theta(3); Sk(2,3) = -theta(1); Sk(3,1) = -theta(2); Sk(3,2) = theta(1); end % 示例用法 q = [0; 0; 0]; % 初始姿态 qdot = [0; 0; 0]; % 初始速度 dt = 0.01; % 时间步长 M = eye(3); % 单位转动惯量矩阵,这里仅为简化示例 C = zeros(3,3); % 阻尼矩阵 G = [0; 0; -9.81]; % 重力分量 [theta, omega] = newtonEulerRecursion(q, qdot, dt, M, C, G); ``` 这个例子假设了单个刚体的情况,实际应用中可能需要处理复杂数组和更复杂的结构。请注意,在使用此算法时,对系统的物理特性和数值稳定性进行适当考虑是必要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值