关于train.py、val.py和predict.py

以下是关于train.pyval.pypredict.py三个脚本的功能解析与典型实现逻辑:

一、核心功能对比

脚本文件主要用途典型输出
train.py模型训练入口,包含数据加载、优化器配置、训练循环及权重保存训练日志、模型权重文件(如best.pt)、损失曲线等可视化结果
val.py模型验证/测试,计算mAP、混淆矩阵等指标,支持验证集和测试集评估精度-召回曲线、类别级AP值、推理速度统计(如FPS)
predict.py单张图像/视频推理,生成带检测框的可视化结果,不输出量化指标标注后的图片或视频文件(如result.jpg),适用于嵌入式部署场景

二、协同工作流程

  1. 标准开发阶段‌:
    • 通过train.py训练模型并保存权重;
    • 使用val.py验证模型在独立数据集上的泛化能力;
    • 最终用predict.py进行实际场景推理。
  2. 特殊场景‌:
    • 分布式训练‌:train.py支持DDP模式(需设置distributed=True);
    • 混合精度‌:通过fp16参数启用半精度训练加速;
    • 数据预处理‌:predict.py需集成图像归一化、尺寸调整等预处理逻辑。

三、关键参数示例

  1. train.py‌:
    model.train(data='coco.yaml', epochs=100, batch=32, optimizer='AdamW')  # 基础训练配置citation{ref="5,8" data="citationList"}
    
  2. val.py‌:
    model.val(data='val.yaml', conf_thres=0.01, iou_thres=0.5)  # 验证时调整置信度阈值
  3. predict.py‌:
    model.predict(source='input.jpg', save=True, conf=0.25)  # 输出带检测框的图片
    

四、实现注意事项

  • 代码结构‌:YOLO系列通常将核心逻辑封装在ultralytics/engine目录下(如训练器、验证器类);
  • 数据兼容性‌:val.py支持COCO/VOC格式数据集,需统一标注文件路径;
  • 性能优化‌:predict.py应启用model.eval()关闭Dropout层以减少计算开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值