作者:来自 Elastic Karen Mcdermott
近年来,金融服务业 (financial services industry - FSI) 面临着越来越大的挑战,从应对新冠疫情期间数字化转型的快速加速到应对经济衰退的影响。这些压力迫使领导者重新思考传统方法并寻找用更少的资源做更多事情的方法。一种常见的策略是整合工具并投资于旨在促进敏捷性和数据驱动决策的技术。然而,尽管做出了这些努力,超过 70% 的领导者仍然难以实时大规模地使用数据。
随着人工智能和生成人工智能 (generative AI - GenAI) 的不断发展,它们提供了释放数据价值的新机会 —— 前提是组织能够建立强大的数据基础。那么,当今的金融服务领导者如何应对这些挑战并利用下一代人工智能来推动其数据成熟度?
我们对 1,005 名高管、业务和技术领导者进行了调查,了解他们当前的业务状况,并具体提供了来自 158 名金融服务领导者的数据和结果。该研究揭示了有关他们的业务挑战、潜在数据问题和投资重点(AI、GenAI 和自动化)的五个关键见解,帮助他们在未来 12 个月及以后将组织推向新的高度。
以下是金融服务领导者关于如何利用数据和人工智能解决业务挑战的五条经验教训。
教训 1:通过优先考虑数据来加速业务创新
“数据是新货币” 是指银行有机会利用传统交易以外的客户数据来增强服务和客户参与度。金融服务公司维护着大量数据,其中大部分数据都滞留在未被充分利用的不同遗留系统中。我们知道,数据驱动的方法对于解决关键业务挑战和推动创新也至关重要 —— 如果没有明智决策所需的数据,就无法解决业务挑战。
如今,许多高管和 IT 领导者都面临着类似的挑战。其中最主要的问题是无法实时、大规模地持续利用数据。研究表明,70% 的金融服务高管认为这是推动其业务挑战的主要障碍。毫不奇怪,61% 的人将投资数据工具和技术作为解决这些问题的首要任务。
教训 2:数据洞察并不能带来多少满足感
为了在日益数字化的世界中有效领导,你必须提供能够在正确的时间向正确的人提供正确的信息的技术。然而,由于数据分布在不同的环境、格式和位置,提取可操作的见解是一项重大挑战。在金融服务领域,63% 的高管对他们所掌握的见解不满意,而 98% 的高管面临着重大的数据管理障碍。这些挑战限制了实时决策(越来越依赖直觉),并导致了代价高昂的后果,如收入损失、生产力下降和运营风险增加。
作为回应,领导者优先考虑对数据工具的投资,其中 69% 专注于数据分析和科学解决方案以提高洞察力。然而,碎片化的体系还不够;构建统一、敏捷的数据基础至关重要。通过投资可扩展的基础设施,你可以为团队提供实时洞察力,以应对挑战、增强客户体验并推动增长。
我们是一家大型银行,有数百个应用程序都使用相同的数据但有数据的副本。我们需要一个大型数据存储库,让所有应用程序都能实时访问数据存储。
- 金融服务行业领导者
教训 3:组织的数据成熟度低于他们的想象
在金融服务领域,77% 的高管和决策者认为他们的组织在数据分析和智能方面比同行更先进。当领导者高估其在数据成熟度旅程中的进展时,就会产生这种增强的自信心。
自我感知的数据成熟度与实际数据成熟度之间的差异:
- 69% 的金融服务业领导者认为他们的数据成熟度处于 3 级或 4 级,但尚未完成所有 1 级里程碑。
- 61% 的金融服务业领导者认为自己的成熟度已达到 4 级,但仅完成了 2 级里程碑的一半左右。
- 66% 的金融服务业领导者认为自己的成熟度已达到 4 级,但尚未完成所有 3 级里程碑。
数据成熟度框架提供了一种客观的方法来评估组织当前的能力、识别弱点并创建使数据策略与业务目标保持一致的路线图。提高数据成熟度的每个级别都至关重要,因为基础里程碑使得采用 AI 和 GenAI 等先进技术成为可能。如果没有强大的数据基础,数据质量差就会导致错误的见解和较弱的创新。
为了解决数据利用问题,公司可以实施数据治理框架,为数据收集、存储和使用建立明确的指导方针、政策和程序,以确保数据质量、安全性和法规合规性。
- 金融服务技术决策者
教训 4:数据和人工智能相结合将增加收入(这还不是全部!)
投资数据技术和人工智能已经成为企业改变游戏规则的关键因素,其带来的不仅仅是运营方面的改进。虽然自动化任务和简化工作流程可以提高生产力并降低成本,但真正的潜力在于创造新的收入来源。超过 75% 的金融服务领导者同意,使用实时数据提取和人工智能驱动的洞察力可以显著提高收入,凸显了这些技术对企业的关键作用。这一共识强调了数据和人工智能对于盈利贡献的关键性。
其好处不仅仅在于效率。金融服务业领导者强调,员工和客户体验的改善是数据和人工智能投资的主要成果。通过将强大的基础设施与先进的分析技术相结合,组织可以帮助团队做出明智的决策、发现新的机遇并提供卓越的体验。将人工智能作为核心能力不仅可以应对当前的挑战,还可以让你的企业实现可持续增长并在行业中保持长期领导地位。
教训 5:组织已经部署了生成性人工智能。你?
生成式人工智能正在重塑行业、彻底改变解决问题和创新的方式。近一半的金融服务领导者将其视为应对挑战的关键,其中 91% 的人正在投资或计划投资。使用金融服务中的案例(如聊天机器人、交易分析器和安全改进)来提供即时价值。因此,91% 的金融服务业高管和决策者计划投资或已经投资生成式人工智能也就不足为奇了。而那些尚未投资的人正在等待生成式人工智能的成熟。
这只是市场发展的方式。不投资[人工智能]我们就会落后。
- 金融服务行业的商业决策者
为了保持竞争力,金融服务领导者正在将人工智能、自动化和分析整合到一个有凝聚力的战略中。这种方法可以增强决策能力、简化操作并推动创新。几乎 90% 的领导者都优先考虑这些技术,采用生成式人工智能对于可持续增长和成功至关重要。
明智地采用 GenAI 可以让你通过创造新机遇和推动创新而领先于竞争对手。为了保持领先的采用速度,你首先必须准备好良好的数据。然后,确定一个可以从大型语言模型 (large language model - LLM) 的价值中受益的高影响力用例。
要安全地获得最佳结果,需要将你的专有数据提供给使用检索增强生成 ( retrieval augmented generation - RAG) 的 GenAI 算法。该技术将你的组织的输出情境化,从而产生更准确和更相关的结果。
金融服务 IT 领导者的关键收获
AI 革命正在重塑行业,金融服务领导者开始利用其变革潜力。从加速创新到推动收入增长,AI 和生成式 AI 提供了无与伦比的竞争优势机会。然而,许多组织难以充分利用这些技术 —— 70% 的 FSI 领导者表示难以实时、大规模地持续利用数据。
这一挑战凸显了金融服务组织处理数据的方式需要发生根本性转变。通过将搜索的精确性与 AI 的智能相结合,你可以获得即时、准确且可操作的见解 —— 支持自信的数据驱动决策。
现在是时候拥抱数据和 AI 的力量来克服挑战、发掘新机遇并引领你的组织走向未来了。
详细了解金融服务 IT 领导者对其数据和 AI 战略的看法。
本文中描述的任何特性或功能的发布和时间均由 Elastic 自行决定。任何当前不可用的特性或功能可能无法按时交付或根本无法交付。
在这篇博文中,我们可能使用或提及了第三方生成式 AI 工具,这些工具由其各自的所有者拥有和运营。Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害承担任何责任。在使用 AI 工具处理个人、敏感或机密信息时,请谨慎行事。你提交的任何数据都可能用于 AI 培训或其他目的。我们无法保证你提供的信息将得到安全或保密。在使用任何生成式 AI 工具之前,你应该熟悉其隐私惯例和使用条款。
Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标志是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。
原文:How banks can use existing data with AI to solve business challenges | Elastic Blog