Shopping Offers
商店购物
IOI'95
译 by Felicia Crazy
在商店中,每一种商品都有一个价格(用整数表示)。例如,一朵花的价格是 2 zorkmids (z),而一个花瓶的价格是 5z 。为了吸引更多的顾客,商店举行了促销活动。
促销活动把一个或多个商品组合起来降价销售,例如:
- 三朵花的价格是 5z 而不是 6z,
- 两个花瓶和一朵花的价格是 10z 而不是 12z。
编写一个程序,计算顾客购买一定商品的花费,尽量利用优惠使花费最少。尽管有时候添加其他商品可以获得更少的花费,但是你不能这么做。
对于上面的商品信息,购买三朵花和两个花瓶的最少花费是:以优惠价购买两个花瓶和一朵花(10z),以原价购买两朵花(4z)。
PROGRAM NAME: shopping
INPUT FORMAT
输入文件包括一些商店提供的优惠信息,接着是购物清单。
第一行
| 优惠商品的种类数(0 <= s <= 99)。 |
第二行..第s+1 行
| 每一行都用几个整数来表示一种优惠方式。第一个整数 n (1 <= n <= 5),表示这种优惠方式由 n 种商品组成。后面 n 对整数 c 和 k 表示 k (1 <= k <= 5)个编号为 c (1 <= c <= 999)的商品共同构成这种优惠,最后的整数 p 表示这种优惠的优惠价(1 <= p <= 9999)。优惠价总是比原价低。 |
第 s+2 行
| 这一行有一个整数 b (0 <= b <= 5),表示需要购买 b 种不同的商品。 |
第 s+3 行..第 s+b+2 行
| 这 b 行中的每一行包括三个整数:c ,k ,和 p 。c 表示唯一的商品编号(1 <= c <= 999),k 表示需要购买的 c 商品的数量(1 <= k <= 5)。p 表示 c 商品的原价(1 <= p <= 999)。最多购买 5*5=25 个商品。 |
SAMPLE INPUT (file shopping.in)
2
1 7 3 5
2 7 1 8 2 10
2
7 3 2
8 2 5
OUTPUT FORMAT
只有一行,输出一个整数:购买这些物品的最低价格。
SAMPLE OUTPUT (file shopping.out)
14
此题解法有很多种.在此介绍动态规划解法.
假设要买s1..s5种物品num[s1]..num[s5]件
用f[a1,a2,a3,a4,a5]表示买a1件s1..a5件s5所用的最小消费
预处理将只买一件也作为一种优惠方式
那么我们可以枚举j表示第j种购买方式。
对于f[a1,a2,a3,a4,a5]必然是由之前的一个状态再加上第j种优惠方式购买而得到。
方程式类似于背包方程
f[0,0,0,0,0]:=0;
输出 f[num[s1],...,num[s5]]
type rr=record num:array[0..2000]of longint; cost:longint; end; var i,j,k,n,p,k1,kk,i1,i2,i3,i4,i5:longint; cheap:array[0..1000]of rr; b:array[0..10]of longint; need,price:array[0..2000]of longint; f:array[0..10,0..10,0..10,0..10,0..10]of longint; flag:boolean; function min(a,b:longint):longint; begin if a<b then exit(a) else exit(b); end; begin fillchar(cheap,sizeof(cheap),0); fillchar(f,sizeof(f),$7f); fillchar(b,sizeof(b),0); readln(n); for i:=1 to n do begin read(k1); for j:=1 to k1 do read(kk,cheap[i].num[kk]); read(cheap[i].cost); end; readln(p); for i:=1 to p do begin readln(b[i],need[b[i]],price[b[i]]); cheap[i+n].num[b[i]]:=1; cheap[i+n].cost:=price[b[i]]; end; f[0,0,0,0,0]:=0; for i1:=0 to need[b[1]] do for i2:=0 to need[b[2]] do for i3:=0 to need[b[3]] do for i4:=0 to need[b[4]] do for i5:=0 to need[b[5]] do begin for j:=1 to n+p do begin flag:=false; if (i1>=cheap[j].num[b[1]])and(i2>=cheap[j].num[b[2]])and(i3>=cheap[j].num[b[3]])and(i4>=cheap[j].num[b[4]])and(i5>=cheap[j].num[b[5]]) then flag:=true; if flag then begin f[i1,i2,i3,i4,i5]:=min(f[i1,i2,i3,i4,i5], f[i1-cheap[j].num[b[1]],i2-cheap[j].num[b[2]],i3-cheap[j].num[b[3]],i4-cheap[j].num[b[4]],i5-cheap[j].num[b[5]]]+cheap[j].cost); end; end; end; writeln(f[need[b[1]],need[b[2]],need[b[3]],need[b[4]],need[b[5]]]); readln;readln; end.