MMDetection3D的安装问题,报错缺失libtorch_cuda_cu.so文件

前言

这个系列是记录我个人在学习过程中,遇到的一些问题,并记录我成功的方法,真实有效

MMDetecion3D本身的安装文档非常不利好于新人,所以在此记录了我遇到的坑与解决办法

使用平台

i7-12700k

4070ti

ubuntu20.04

conda虚拟环境中,python=3.8

遇到的问题

根据官方文档操作,前面全部安装成功,包括MMDetction3D也显示安装成功,但是仍然在运行他给出的demo:

python demo/pcd_demo.py demo/data/kitti/000008.bin pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth --show

报错:缺失了libtorch_cuda_cu.so文件

在conda的env路径中搜索,只有libtorch文件而确实没有上述文件。

如下是解决办法

最后发现确实是自己安装的mmcv并不匹配,但是网上的说法都非常的繁琐与笼统,你根本不知道自己究竟应该如何对应,一下是两种我都已经尝试过的成功安装的方法。

方法一:从官网上下载.whl文件

### 解决 mmdetection3d 中 `libtorch_cuda_cu.so` 找不到的问题 当遇到 `ImportError: libtorch_cuda_cu.so cannot open shared object file` 错误时,这通常意味着系统无法找到所需的共享库文件。此问题可能由多种原因引起,包括环境配置错误、依赖项版本不匹配或安装路径设置不当。 #### 1. 验证 PyTorch 安装及其 CUDA 支持 确保已正确安装带有适当 CUDA 版本支持的 PyTorch。对于特定于 CUDA 的包,建议使用官方提供的预编译二进制文件来简化安装过程并减少兼容性问题: ```bash pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html ``` 上述命令会从指定 URL 下载适用于 CUDA 11.1 的 PyTorch 及其相关组件[^1]。 #### 2. 设置 LD_LIBRARY_PATH 环境变量 如果仍然存在找不到 `.so` 文件的情况,则可能是由于动态链接器未能定位到这些库的位置。可以通过调整 `LD_LIBRARY_PATH` 来显式指明额外的查找目录: ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/pytorch/lib ``` 请注意替换 `/path/to/pytorch/lib` 为实际安装位置下的 `lib` 子目录路径。 #### 3. 检查 Python 路径中的所有模块是否正常加载 有时即使库本身已经就位,但如果其他依赖关系存在问题也可能引发类似的导入失败现象。可以尝试运行如下脚本来诊断潜在冲突: ```python import os os.environ['PYTHONPATH'] = ':'.join([p for p in os.getenv('PYTHONPATH', '').split(':') if 'site-packages' not in p]) print(os.getenv('PYTHONPATH')) ``` 该操作有助于排除因重复定义或其他异常情况造成的干扰因素。 通过以上措施应该能够有效解决大多数情况下发生的此类错误。不过具体情况还需具体分析,在排查过程中保持耐心非常重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值