算法与设计实验一:利用Prim算法和Kruskal算法构造最小生成树

本文详细介绍了如何使用Prim算法和Kruskal算法来构造图的最小生成树。Prim算法从任意顶点开始,逐步通过最短边将顶点加入树中,直至覆盖所有顶点。Kruskal算法则按边的权值排序,依次添加边,防止形成环路,直至所有顶点都在树中。文章提供了两种算法的设计思路、时间复杂度分析,并给出了源码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题

举一个实例,画出采用Prim算法构造最小生成树的过程,编写算法。
举一个实例,画出采用Kruskal算法构造最小生成树的过程,编写算法。

2. 解析

Prim 算法的基本思想: 从图中任意取出一个顶点,把它当成一棵树,然后从这棵树相接的边中选择一条最短的边(权值最小)的边,并将这条边及其所连接的顶点也一起并入到这棵树中,此时得到的是一颗有两个顶点的树,然后从这棵树相接的边中选取一条最短的边,并将这条边及其所连接的顶点也一起并入到当前的树中,得到一颗具有三个节点的树,以此类推直到所有的顶点的纳入到树中为止,此时得到的树是最小生成树。
Kruskal算法的基本思想:在与已选取的边不构成回路的边中选取最小者。先将所有的边按权值大小排序,然后依次加边,避免生成圈,直到所有点都包含在内,这样得到的一颗权值最小的树叫做最小生成树。
在这里插入图片描述

3. 设计

【Prim】

int graph[MAX][MAX];//记录各点之间的距离 
 
int prim(int graph[][MAX], int n)
{
   
   
	int lowcost[MAX];
	int mst[MAX];
	int i, j, min, minid, sum = 0;
	for (i = 2; i <= n; i++)//先将最原始的各点之间的距离保存 
	{
   
   
		lowcost[i] = grap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值