默认已经安装好Anaconda
1. 创建虚拟环境
conda create -n 虚拟环境名称 python=版本
2. 激活虚拟环境
conda activate xxxx(虚拟环境名)
3. 安装Jupyter Notebook
【注】不安装的话,在虚拟环境中输入jupyter notebook会找不到对应的虚拟环境。
conda install ipykernel
conda install nb_conda
4. 安装tensorflow-gpu
这里有两种方式,一种是conda,一种是pip。二者的区别在于,使用conda命令安装时会自动安装tensorflow-gpu对应版本的cuda和cudnn,而使用pip安装则需要额外单独安装对应的cuda及cudnn(之前看网上教程以为pip命令不需要单独安装cuda和cudnn,反复查找后发现conda好用,遂使用conda命令安装)。
下面先附上tensorflow-gpu、python、cuda和cudnn对应版本图(最新版需到tensorflow官网查看)。
需要注意的是TF1.x已经停止更新故对新硬件(主要是RTX30系列之后的显卡)不支持,故需要使用Nvidia-TensorFlow代替官方版本。