OpenCV图像处理技术之图像直方图

本文介绍了OpenCV中的图像直方图绘制方法,包括使用plt.hist和cv2.calcHist函数。讨论了直方图均衡化的重要性和实现,提供了彩色图像直方图的绘制和自适应均衡化的练习。还涉及了直方图比较和阈值法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

© Fu Xianjun. All Rights Reserved.所有素材来自于小傅老师。

我们公布上一期的任务答案吧!

开始今天的学习了,搬好小板凳!

重点:直方图的绘制方法,直方图的均衡

难点:直方图的比较,直方图阈值法

图像直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数。

直方图是数值数据分布的精确图形表示。 这是一个连续变量(定量变量)的概率分布的估计,并且被卡尔·皮尔逊(Karl Pearson)首先引入。它是一种条形图。 构建直方图: ①将值的范围分段 ②计算每个间隔中有多少值

作用:

(1)显示图像质量波动的状态 (2)较直观地传递有关过程图像质量状况的信息 (3)掌握过程的状况,从而确定在什么地方集中力量进行图像质量改进工作。

回忆直方图表现的摄影状态,欠曝过曝

使用plt.hist绘制直方图,并修改分割参数,256,122,50并显示

import cv2
import matplotlib.pyplot as plt
img1=cv2.imread("hj.jpg",0)
cv2.imshow("img1",img1)
plt.hist(img1.ravel(),256,facecolor='yellowgreen')
cv2.waitKey()
cv2.destroyAllWindows()

import cv2
import matplotlib.pyplot as plt
img1=cv2.imread("bd.jpg")
cv2.imshow("img1",img1)
plt.hist(img1.ravel(),256)
cv2.waitKey()
cv2.destroyAllWindows()

cv2.calcHist(images,channels,mask,histSize,ranges,accumulate)

channels:指定通道编号。通道编号需要用“[]”括起来。 mask:掩模图像。当统计整幅图像的直方图时,将这个值设为None histSize: BINS的值,该值需要用“[]”括起来。 ranges:即像素值范围。例如,8位灰度图像的像素值范围是[0,255] accumulate:累计(累积、叠加)标识,默认值为False

使用cv2.calcHist绘制直方图,并修改分割参数,256,122,50并显示

import cv2
import numpy as

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值