Fu Xianjun. All Rights Reserved.所有素材来自于小傅老师。
我们公布上一期的任务答案吧!
开始今天的学习了,搬好小板凳!
重点:直方图的绘制方法,直方图的均衡
难点:直方图的比较,直方图阈值法
图像直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数。
直方图是数值数据分布的精确图形表示。 这是一个连续变量(定量变量)的概率分布的估计,并且被卡尔·皮尔逊(Karl Pearson)首先引入。它是一种条形图。 构建直方图: ①将值的范围分段 ②计算每个间隔中有多少值
作用:
(1)显示图像质量波动的状态 (2)较直观地传递有关过程图像质量状况的信息 (3)掌握过程的状况,从而确定在什么地方集中力量进行图像质量改进工作。
回忆直方图表现的摄影状态,欠曝过曝
使用plt.hist绘制直方图,并修改分割参数,256,122,50并显示
import cv2
import matplotlib.pyplot as plt
img1=cv2.imread("hj.jpg",0)
cv2.imshow("img1",img1)
plt.hist(img1.ravel(),256,facecolor='yellowgreen')
cv2.waitKey()
cv2.destroyAllWindows()
import cv2
import matplotlib.pyplot as plt
img1=cv2.imread("bd.jpg")
cv2.imshow("img1",img1)
plt.hist(img1.ravel(),256)
cv2.waitKey()
cv2.destroyAllWindows()
cv2.calcHist(images,channels,mask,histSize,ranges,accumulate)
channels:指定通道编号。通道编号需要用“[]”括起来。 mask:掩模图像。当统计整幅图像的直方图时,将这个值设为None histSize: BINS的值,该值需要用“[]”括起来。 ranges:即像素值范围。例如,8位灰度图像的像素值范围是[0,255] accumulate:累计(累积、叠加)标识,默认值为False
使用cv2.calcHist绘制直方图,并修改分割参数,256,122,50并显示
import cv2
import numpy as