Python编程: 高阶编程

Python 高阶编程

Python 是一门支持多种编程范式的语言,除了基本的面向对象和过程式编程外,它还提供了许多高阶编程技巧,包括函数式编程、装饰器、元类、生成器、协程等。这些特性可以帮助你写出更简洁、灵活、可维护的代码。

函数是一等公民(First-class Functions)

在 Python 中,函数可以像变量一样被传递、赋值、作为参数或返回值。

示例:
def greet(name):
    return f"Hello, {name}"

def call_func(func, arg):
    return func(arg)

print(call_func(greet, "Alice"))  # 输出: Hello, Alice

高阶函数(Higher-order Functions)

高阶函数是指接受函数作为参数或返回一个函数的函数。

常见内置高阶函数:

  • map()
  • filter()
  • sorted()
  • functools.reduce()
示例:
from functools import reduce

nums = [1, 2, 3, 4, 5]

# map:对每个元素应用函数
squared = list(map(lambda x: x ** 2, nums))  # [1, 4, 9, 16, 25]

# filter:过滤符合条件的元素
even = list(filter(lambda x: x % 2 == 0, nums))  # [2, 4]

# reduce:累积计算
total = reduce(lambda x, y: x + y, nums)  # 15

闭包(Closure)

闭包是指一个函数捕获了其作用域中的变量,并能够在其他上下文中继续使用这些变量。

示例:
def outer():
    count = 0
    def inner():
        nonlocal count
        count += 1
        return count
    return inner

counter = outer()
print(counter())  # 1
print(counter())  # 2

装饰器(Decorators)

装饰器是 Python 中最强大的功能之一,用于增强或修改函数行为而不修改其源码。

简单装饰器:

def my_decorator(func):
    def wrapper(*args, **kwargs):
        print("Before function call")
        result = func(*args, **kwargs)
        print("After function call")
        return result
    return wrapper

@my_decorator
def say_hello():
    print("Hello")

say_hello()

输出:

Before function call
Hello
After function call

带参数的装饰器

可以定义装饰器本身也接受参数。

def repeat(times):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(times):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(3)
def greet(name):
    print(f"Hello, {name}")

greet("Alice")

类装饰器

不仅可以装饰函数,还可以装饰类。

def add_method(cls):
    def new_method(self):
        return "New method added!"
    cls.new_method = new_method
    return cls

@add_method
class MyClass:
    pass

obj = MyClass()
print(obj.new_method())  # 输出: New method added!

元类(Metaclass)

元类控制类的创建过程,是“类的类”。通常用于自动注入属性、方法或进行类注册等操作。

示例:自定义元类

class MyMeta(type):
    def __new__(cls, name, bases, attrs):
        if 'required_method' not in attrs:
            raise TypeError("必须实现 required_method 方法")
        return super().__new__(cls, name, bases, attrs)

class MyClass(metaclass=MyMeta):
    def required_method(self):
        pass

# 下面这行会报错,因为没有实现 required_method
# class BadClass(metaclass=MyMeta):
#     pass

生成器(Generators)

生成器是一种特殊的迭代器,可以按需生成数据,节省内存。

使用 yield 定义生成器:

def fibonacci(n):
    a, b = 0, 1
    while a < n:
        yield a
        a, b = b, a + b

for num in fibonacci(100):
    print(num)

协程与异步编程(async/await)

Python 支持异步 I/O 操作,适用于高并发网络请求、IO 密集型任务。

示例:
import asyncio

async def say_after(delay, what):
    await asyncio.sleep(delay)
    print(what)

async def main():
    task1 = asyncio.create_task(say_after(1, "Hello"))
    task2 = asyncio.create_task(say_after(2, "World"))

    print("Started at", asyncio.get_event_loop().time())
    await task1
    await task2
    print("Finished at", asyncio.get_event_loop().time())

asyncio.run(main())

描述符(Descriptors)

描述符是一个实现了特定协议的对象,可以自定义属性访问逻辑。

class RevealAccess:
    def __init__(self, initval=None, name='var'):
        self.val = initval
        self.name = name

    def __get__(self, instance, owner):
        print('Getting', self.name)
        return self.val

    def __set__(self, instance, value):
        print('Setting', self.name)
        self.val = value

class MyClass:
    x = RevealAccess(10, 'x')

m = MyClass()
print(m.x)  # 触发 __get__
m.x = 20    # 触发 __set__

魔术方法(Magic Methods / Dunder Methods)

通过重写 __init__, __str__, __repr__, __call__, __enter__, __exit__ 等方法,可以让类具有更自然的行为。

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.name} is {self.age} years old."

    def __repr__(self):
        return f"Person('{self.name}', {self.age})"

p = Person("Bob", 30)
print(p)        # 输出: Bob is 30 years old.
print(repr(p))  # 输出: Person('Bob', 30)

上下文管理器

# 使用with语句
with open('file.txt', 'r') as f:
    content = f.read()

# 自定义上下文管理器
class MyContextManager:
    def __enter__(self):
        print("Entering context")
        return self
    
    def __exit__(self, exc_type, exc_val, exc_tb):
        print("Exiting context")

with MyContextManager() as cm:
    print("Inside context")

并发和多线程

from concurrent.futures import ThreadPoolExecutor
import time

def task(name):
    print(f"Task {name} started")
    time.sleep(2)
    print(f"Task {name} finished")
    return f"Result from {name}"

with ThreadPoolExecutor(max_workers=3) as executor:
    results = executor.map(task, ['A', 'B', 'C'])

for result in results:
    print(result)

性能优化技巧

使用__slots__

class RegularClass:
    pass

class SlotsClass:
    __slots__ = ['x', 'y']
    
    def __init__(self, x, y):
        self.x = x
        self.y = y

使用functools.lru_cache缓存

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

设计模式实现

单例模式

class Singleton:
    _instance = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

工厂模式

class Dog:
    def speak(self):
        return "Woof!"

class Cat:
    def speak(self):
        return "Meow!"

def get_pet(pet="dog"):
    pets = dict(dog=Dog(), cat=Cat())
    return pets[pet]

总结:Python 高阶编程常用技术

技术用途
闭包封装状态和逻辑
装饰器增强函数行为
元类控制类的创建逻辑
生成器按需生成数据
异步编程提升 IO 并发性能
描述符自定义属性访问逻辑
魔术方法实现自定义类型行为

这些高阶编程技术可以帮助你编写更高效、更灵活和更易于维护的Python代码。掌握这些概念将使你能够更好地利用Python的强大功能

推荐学习资源

  • 《流畅的 Python》 —— Luciano Ramalho 著
  • Python 官方文档 - Data model
  • Real Python - Advanced Python
  • Awesome Python 高阶技巧
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值