决策树:ID3、C4.5和CART特征选择方式

1 前言

该文章主要目的是记录ID3、C4.5和CART特征选择方式,这里只对决策树进行简单介绍。
决策树(Decision Tree)算法是一种有监督学习算法,它利用分类的思想,根据数据的特征构建数学模型,从而达到数据的筛选和决策的目标。它的重点是将看似无序、杂乱的已知数据,通过某种技术手段转化成可以预测未知数据的树状模型。每一条从根节点(对最终分类结果贡献最大的属性)到叶子节点(最终分类结果)的路径都代表一条决策的规则。

在预测时,从根节点出发,根据特征实际值,转移至某个子节点,直至叶子节点,从而完成决策。
在决策树构建的过程中,首先由所有的数据构成根节点,根据某种策略对某个特征进行划分,数据集被分割成若干份,每一份构成一个子节点。进而对子节点继续划分,直至决策树生成完毕。
常用的决策树构建算法有ID3、C4.5和CART等,它们之间关键区别是用于划分数据集的特征的选择策略不同,以下对其策略进行介绍。

2 ID3

ID3算法使用信息增益指导决策树的划分。
首先介绍概念:。熵表示随机变量不确定性的度量。先给出公式:
Info(Y)=−∑yp(y)log⁡p(y)Info(Y)=-\sum_{y}{p(y)\log{p(y)}}Info(Y)=yp(y)logp(y)
对于决策树中的某一个节点,可以通过上述公式计算熵,其中YYY表示类别,yyy表示具体的类别值。熵越小越好。
信息增益表示特征AAA使得类Y的不确定性减小的程度。公式如下:
Gain(D,A)=Info(D)−Info(D,A)Gain(D,A)=Info(D)-Info(D,A)Gain(D,A)=Info(D)Info(D,A)
D是数据集,AAA表示被划分的特征。Info(D)Info(D)Info(D)表示某个节点的熵,Info(X,D)Info(X,D)Info(X,D)表示当前节点按照AAA划分之后,得到的子节点的熵的加权和。
Info(D,A)=∑a∣DA=a∣∣D∣Info(DA=a)Info(D,A)=\sum_{a}{\frac{|D_{A=a}|}{|D|}Info(D_{A=a})}Info(D,A)=aDDA=aInfo(DA=a)
DA=aD_{A=a}DA=a表示AAA为a的样本组成的子节点,权重是DA=aD_{A=a}DA=a的样本数量与DDD的样本数量的比值。
每次划分,计算每个特征的Gain(D,A)Gain(D,A)Gain(D,A),选择Gain(D,A)Gain(D,A)Gain(D,A)最大的特征划分数据集。

3 C4.5

C4.5相比于ID3的主要区别是使用信息增益率替代信息增益。信息增益率是信息增益与自身熵IV(D,A)IV(D,A)IV(D,A)的比值。
Gain_ratio(D,A)=Gain(D,A)IV(D,A)Gain\_ratio(D,A)=\frac{Gain(D,A)}{IV(D,A)}Gain_ratio(D,A)=IV(D,A)Gain(D,A)
自身熵表示当前节点划分的程度,划分的子节点越少,越均匀,自身熵越小,信息增益率越大。
IV(D,A)=−∑a∣DA=a∣∣D∣log⁡∣DA=a∣∣D∣IV(D,A)=-\sum_a{\frac{|D_{A=a}|}{|D|}\log{\frac{|D_{A=a}|}{|D|}}}IV(D,A)=aDDA=alogDDA=a
每次划分,计算每个特征的信息增益率,选择信息增益率最大的特征划分数据集。

4 CART

相比于上面的方法,CART使用基尼(Gini)指数选择特征。
基尼(Gini)指数使用p(y)(1−p(y))p(y)(1-p(y))p(y)(1p(y))替代p(y)log⁡p(y)p(y)\log{p(y)}p(y)logp(y),公式如下:
Gini(D)=∑ip(y)(1−p(y))=1−∑ip2(y)Gini(D)=\sum_{i}p(y)(1-p(y))=1-\sum_i{p^2(y)}Gini(D)=ip(y)(1p(y))=1ip2(y)
做这个替代有什么影响呢。可以看一下图像。
p(y)log⁡p(y)p(y)\log{p(y)}p(y)logp(y)为:

p(y)(1−p(y))p(y)(1-p(y))p(y)(1p(y))为:

可以看到p(y)log⁡p(y)p(y)\log{p(y)}p(y)logp(y)图像比较倾斜,而p(y)(1−p(y))p(y)(1-p(y))p(y)(1p(y))比较对称,在0.5取到最大值。一个类别准确率为0.5是最具不确定性的,也就是最差的,所以从图像上看明显p(y)(1−p(y))p(y)(1-p(y))p(y)(1p(y))更符合目标。
D根据特征A被划分为多个子结点后,得到的子节点的基尼(Gini)指数的加权和。
Gini(D,A)=∑a∣DA=a∣∣D∣Gini(DA=a)Gini(D,A)=\sum_{a}{\frac{|D_{A=a}|}{|D|}Gini(D_{A=a})}Gini(D,A)=aDDA=aGini(DA=a)
每次划分,计算每个特征的Gini(D,A)Gini(D,A)Gini(D,A),选择Gini(D,A)Gini(D,A)Gini(D,A)最大的特征划分数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值