【2】coreML基于图像的处理(图像识别)

本文介绍了机器学习的基础知识,包括面部识别和特征检测,并探讨了神经网络的不同类型。通过CoreML在iOS中实现图像识别,以识别大金毛为例,展示模型的训练和应用过程,最终达到96.434%的高准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 Machine Learning?

机器学习是人工智能的一个分支,他的目的在于吸收任何的数据比如说(图像,文本,语音,统计数据) 然后作出预测数据当中所隐藏的特征或是行为。

AI  ML  DL 之间的关系

ML可以做什么?

面部识别
面部特征识别 (微笑、哭泣…)
特征检测和替换 (把你的哭变成笑)

ML是怎么学习的?

我们使用海量的图片,数据等等来告诉他A是啥B是啥,笑是什么等等
然后让他通过这些数据找到最符合这个图的结果。

但是,怎么和学习有关吗?
一个模型,经过多次的使用,会越来越聪明,分辨的可靠性越来越高。
有点像走迷宫,有很多种出去的方法。走的多了,就知道最近的一条路是哪了。
万一遇到死胡同怎么办呢?对,比方说他识别是个砖头,但是后面的信息是它的叫声是汪汪汪,很明显猜测砖头是错。我们就返回去,接着去找其它的路。
直到所有的数据都分析完了,给你一个最可靠的答案。当然这个答案也可能是错的。。。

神经网络

1、人工神经网络(ANN)

人工神经网络Artificial Neuron Network是基于生物的神经结构和功能的一种计算模式。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值