什么是 Machine Learning?
机器学习是人工智能的一个分支,他的目的在于吸收任何的数据比如说(图像,文本,语音,统计数据) 然后作出预测数据当中所隐藏的特征或是行为。
ML可以做什么?
面部识别
面部特征识别 (微笑、哭泣…)
特征检测和替换 (把你的哭变成笑)
ML是怎么学习的?
我们使用海量的图片,数据等等来告诉他A是啥B是啥,笑是什么等等
然后让他通过这些数据找到最符合这个图的结果。
但是,怎么和学习有关吗?
一个模型,经过多次的使用,会越来越聪明,分辨的可靠性越来越高。
有点像走迷宫,有很多种出去的方法。走的多了,就知道最近的一条路是哪了。
万一遇到死胡同怎么办呢?对,比方说他识别是个砖头,但是后面的信息是它的叫声是汪汪汪,很明显猜测砖头是错。我们就返回去,接着去找其它的路。
直到所有的数据都分析完了,给你一个最可靠的答案。当然这个答案也可能是错的。。。
神经网络
1、人工神经网络(ANN)
人工神经网络Artificial Neuron Network是基于生物的神经结构和功能的一种计算模式。</