定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进行分析T(n)随着n的变化情况并确定T(n)的数量级。
算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O( f(n) )。它表示随着问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。
一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法。
分析
如何分析一个算法额时间复杂度呢?即如何推导大O阶?
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项相乘的常数。
4、得到的最后结果就是大O阶。
线性阶
一般含有非嵌套循环设计线性阶,线性阶就是随着问题规模n的扩大,对应计算次数呈直线增长。
平方阶
从上面我们得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
例如:
n +(n-1) +(n-2)+…+1 = n(n+1)/2 = n^2/2 + n/2,
根据前面的分析三部曲,
n^2/2 + n/2
–> n^2/2 + n/2
–> n^2/2
–> n^2
,
最终我们得到 O(n^2)
对数阶
由于每次i * 2后,就距离n更近一步。假设有x个2相乘后大于或等于n,则会退出循环。
上图看出,2^x = n, 得到 x = log(2)n ,所以这个循环的时间复杂度为O(logn)
例子
我们可以看到,函数体是打印这个函数。
function函数的时间复杂度是O(1)。所以整体的时间复杂度就是循环的次数O(n)
如果我们的function是下列这样:
这个算法的时间复杂度就是O(n^2)
========================================
常见时间复杂度
平均运行时间是期望的运行时间。
最坏运行时间是一种保证。在应用中,这是一种最重要的需求,通常除非特别指定,我们提到的运行时间都是最坏情况的运行时间。
算法的空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:S(n) = O( F(n) ) ,其中n为问题的规模,f(n)为语句关于n所占存储空间的函数。
通常,我们都是用“时间复杂度”来指运行时间的需求,“空间复杂度”指空间需求。
显然对于时间复杂度的追求更是属于算法的潮流。