[bzoj3309] DZY Loves Math

博客介绍了数论问题DZY Loves Math,涉及正整数n的质因子最大幂指数f(n)的计算,并探讨了在a到b范围内对所有i和j的f((i,j))的求和问题,通过莫比乌斯反演进行分析解决。" 106662287,7426968,Java多线程调优:理解上下文切换,"['Java开发', '多线程编程', '系统性能', '并发处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。
给定正整数a,b,求ai=1bj=1f((i,j))

T≤10000
1≤a,b≤107

分析

看到两个sigma和(i,j),就要条件反射想到莫比乌斯反演。
首先令a≤b
枚举公约数,得到:

Ans=d=1af(d)i=1adj=1bd[(i,j)=1]

Ans=d=1af(d)d=1adμ(d)addbdd

令T=dd’,得到:
Ans=T=1aaTbTd|Tf(d)mu(Td)

g[T]=d|Tf(d)mu(Td),那么只要预处理g数组的前缀和,就可以以根号的复杂度询问了。
g数组的预处理看起来是带log的。但是根据莫比乌斯函数的性质,如果Td存在平方因子,函数值是等于0的,也就是对答案没有贡献。
那么设T=p1k1p2k2...pmkm,T质因数的最大幂是k,那么只有ki=k的质因数有用。又可以设Td=p1a1p2a2...pmam,其中ai[0,1]
可以发现f(d)只能取到k,k-1,现在令其中一个满足ki=k的质因数为d的最大幂,如果f(d)=k,那么ai=0,其它为0或1均可。然而一个a取0,就相当于给莫比乌斯函数乘1,取1就是乘-1。所以最终答案乘的系数是0。特殊情况:如果T是质数,乘的系数是1(因为没有其它质因数了)。
如果f(d)=k-1,那么ai=1,所有其它满足ki=k的质因数也要让对应的a值取1,这时剩下的质因数也和上面一样,最后得到的系数是0。特殊情况:如果每个ki都等于k,那么由于没有剩下可以取0、1的质因数,它的系数也是1。
这样就可以线性预处理了。
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=1e7;

typedef long long LL;

int T,mu[N+5],tot,p[N],f[N+5];

LL s[N+5],ans;

bool bz[N+5];

char c;

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

int main()
{
    mu[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!bz[i])
        {
            mu[i]=-1;
            p[tot++]=i;
        }
        for (int j=0;j<tot && i*p[j]<=N;j++)
        {
            int I=i*p[j];
            bz[I]=1;
            if (i%p[j]==0)
            {
                mu[I]=0; break;
            }
            mu[I]=-mu[i];
        }
    }
    for (int i=2;i<=N;i++) if (mu[i]!=0)
    {
        for (LL j=i;j<=N;j*=i) s[j]=-mu[i];
    }
    for (int i=1;i<=N;i++) s[i]+=s[i-1];
    T=read();
    while (T--)
    {
        int a=read(),b=read();
        if (a>b) a^=b^=a^=b;
        ans=0;
        for (int i=1,j;i<=a;i=j+1)
        {
            j=min(a/(a/i),b/(b/i));
            ans+=(s[j]-s[i-1])*(a/i)*(b/i);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值