这本由Hugging Face Transformers 的创建者 Lewis Tunstall、Leandro von Werra 和 Thomas Wolf合著的一本关于自然语言处理(NLP)和Transformers模型的书籍,对NLP的最新技术和Transformer架构应用进行深入探讨,并且包含了大量实用的示例和案例分析。
这本书以实践的方式教你Transformers 的工作原理以及如何将它们集成到应用程序中。通过这本书,你将很快了解它们可以帮助你解决的各种任务。
如果你需要这本书的pdf,可以及时分享给你!
本书旨在帮助你构建属于自己的语言应用程序。基于此,书中着重展示实际用例,仅在必要时深入剖析理论。本书的风格注重实践,所以强烈建议你亲自运行代码示例,在实践中探索,通过实验加深理解。
这本书一共包含11个章节:
第1章“Hello Transformers”对transformer进行了介绍,同时引入了Hugging Face生态系统。
第2章“文本分类”聚焦于情感分析这一常见的文本分类问题,并对Trainer API进行了介绍。
第3章“Transformer解剖”深入剖析Transformer架构,为您学习后续章节奠定基础。
第4章“多语言命名实体识别”主要研究如何识别多种语言文本中的实体,这属于标记分类问题。
第5章“文本生成”探究Transformer模型生成文本的能力,同时介绍了解码策略和相关指标。
第6章“摘要”深入钻研文本摘要这一复杂的序列到序列任务,并探讨用于该任务的各项指标。
第7章“问答”重点讲解如何构建基于评论的问答系统,还会介绍如何运用Haystack进行检索。
第8章“让Transformers在生产中高效运行”将重点放在模型性能上。我们会研究意图检测任务(一种序列分类问题),并探索知识提炼、量化和修剪等技术。
第9章“处理少量或无标签”探讨在缺乏大量标签数据的情况下,提升模型性能的方法。我们将构建一个GitHub问题标记器,并探索零样本分类和数据增强等技术。
第10章“从头开始训练Transformers”为您展示如何从头开始构建并训练用于自动完成Python源代码的模型。我们会研究数据集流和大规模训练,同时构建我们自己的标记器。
第11章“未来方向”探讨Transformer面临的挑战,以及该领域研究中一些令人兴奋的新方向。