家人们!今天咱来唠唠超火的 LangChain ,不管是想搞 AI 应用开发,还是想玩转大模型 “搭积木”,这篇从概念到实战的 “白话指南”,包你看明白、学得轻松。
一、先搞懂基础:LangChain 是啥,为啥这么火?
想玩 LangChain,得先明白它的 “定位”!
1. 什么是开发框架?
开发框架就像 “AI 开发工具箱”:把常用功能(比如调用模型、处理数据、记忆对话)打包成 “模块”,开发者不用重复写代码,直接拼模块就能做 AI 应用,效率翻倍。
打个比方:做 “智能问答” 应用,以前得自己写 “调用模型代码 + 数据处理代码 + 对话记忆代码”,而用 LangChain 可以直接选对应的模块,像搭积木一样拼起来,超省事儿~
2. 什么是 LangChain,它的意义是什么?
LangChain 是 专门为大语言模型(LLM)设计的开发框架。核心意义:
-
让 LLM 更好用:帮你连接模型(比如 ChatGPT、文心一言)、处理数据、管理对话记忆,把 LLM 的能力 “最大化”。
-
降低 AI 开发门槛:不管你是技术小白,还是资深开发者,用 LangChain 都能快速做出 “智能应用”(比如知识库问答、多轮对话机器人)。
简单说:LangChain 是你和 LLM 之间的 “翻译官 + 工具人”,让 AI 开发更简单、更强大~
二、LangChain 核心组件拆解:5 大模块,构建 AI 应用
LangChain 的核心是 5 大组件,掌握它们,就能玩转框架。阿猿来逐个拆解~
1. Chat models VS LLMs:选对模型,事半功倍
-
LLMs(大语言模型):基础版 “文本生成器”,输入文本,输出文本(比如 GPT - 3.5)。
-
Chat models(对话模型):进阶版,专门优化 “多轮对话”,能记住上下文,回复更连贯(比如 ChatGPT、豆包)。
怎么选?:做 “单次问答” 用 LLMs;做 “多轮对话、聊天机器人” 用 Chat models,体验更丝滑~
2. 模型 I/O 封装:让模型 “听话又好用”
模型 I/O 封装,就是 “给模型穿衣服”,让它输出更符合需求:
-
Prompts 模板:预设 “指令模板”,比如 “请用幽默风格回答:{问题}”,模型会自动套模板输出。
-
自定义 Prompts 模板:根据业务需求,自己设计模板(比如 “作为美食博主,回答:{问题},要突出性价比”)。
-
序列化模板:把复杂指令拆成 “步骤模板”,让模型一步步执行(比如 “先分析问题,再找知识,最后总结”)。
举个栗子🌰:做 “旅游问答机器人”,用 Prompts 模板写 “作为旅行博主,推荐 {城市} 的小众景点,突出人少、好玩,500 字左右”,模型直接输出 “模板化 + 个性化” 回答。
3. 数据连接(Data Connection):让模型 “access 到知识”
模型光会聊天不够,得能 “查资料”!数据连接就是 “给模型连知识库”:
-
文本向量化实现方式:把文本转成 “向量”,方便快速检索(比如用 Embedding 模型,把 “北京旅游” 转成一组数字)。
-
与 AI 共舞的向量数据库:存向量的数据库(比如 Chroma、Pinecone),模型能快速找相关知识。
-
文档转换切割:把大文档(比如 PDF、Word)切成小片段,模型好处理(比如用 LangChain 工具,自动切割文档)。
实战栗子🌰:做 “金融知识库问答”,用数据连接模块,把金融文档转成向量存到数据库,用户提问时,模型先检索知识库,再回答,解决 “知识过时、不准确” 问题。
4. Memory 记忆封装:让模型 “记住聊天历史”
普通模型 “聊完就忘”,Memory 模块让模型 “有记忆”:
-
多种内置链的介绍与使用:LangChain 自带多种 “记忆链”(比如对话记忆链、知识记忆链),直接调用。
-
Memory 工具的使用:用工具把聊天历史存起来(比如存到数据库、缓存),模型随时能查。
-
为链增加 Memory:给 “对话链” 加记忆,让多轮对话更连贯(比如用户说 “之前提到的景点”,模型能回忆起 earlier 说的内容)。
实战栗子🌰:做 “多轮对话机器人”,用 Memory 模块记录 “用户喜欢的旅游风格(比如爱小众、爱美食)”,后续推荐更精准,像真人聊天一样。
5. 链(chain):把组件 “串成流程”
链(chain)就是 “组件串联器”,把 “模型、数据连接、Memory” 等组件串成一个 “工作流”:
-
LCEL 表达式:LangChain 的 “工作流语法”,用简单代码描述流程(比如 “模型 → 数据连接 → 输出”)。
-
LCEL Runnable 协议设计与使用:定义组件怎么 “协同工作”(比如模型处理完,数据连接模块自动检索知识)。
-
LCEL 进阶使用:整合复杂逻辑的多链:把多个链组合,处理复杂任务(比如 “先检索知识,再生成回答,最后存到 Memory”)。
-
LCEL 添加记忆:给链加 Memory,让整个流程有 “记忆”(比如多轮对话中,每一步都记住上下文)。
实战栗子🌰:做 “企业知识库问答系统”,用链把 “用户提问 → 数据连接检索知识 → 模型生成回答 → Memory 记录对话” 串起来,一个流程解决问题。
三、实战项目:用 LangChain 搭建 “企业知识库”,落地才是硬道理
光说不练假把式!阿猿带你们落地一个 “基于 LangChain 的企业知识库实战项目”,解决 “员工查知识难” 问题。
1. 需求分析:企业知识分散?用 LangChain 集中管理
-
痛点:企业文档散落在各处(比如云盘、Wiki),员工找知识像 “大海捞针”,效率低。
-
目标:搭建一个智能知识库,员工提问后,LangChain 自动检索文档、生成回答,支持多轮对话。
2. 项目步骤拆解
(1)数据连接:把企业文档 “喂给” LangChain
-
用 LangChain 的
DocumentLoader
加载文档(支持 PDF、Word、Markdown 等); -
用
TextSplitter
切割文档(比如按 500 字一段,保留上下文); -
用
Embedding
模型(比如OpenAIEmbeddings
或开源模型)把文本转成向量; -
把向量存到向量数据库(比如 Chroma),建立企业知识库。
(2)Memory 记忆封装:让系统 “记住员工对话”
-
用
ConversationBufferMemory
记录多轮对话; -
配置 Memory 存储(比如存到内存或数据库),让系统能回忆 earlier 问题。
(3)链(chain)搭建:串联组件,实现智能问答
-
用 LCEL 设计流程:
用户提问 → 数据连接检索知识 → Chat model 生成回答 → Memory 记录对话
; -
代码示例(简化版):
from langchain import LLMChain, PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
# 定义Prompt模板
template ="作为企业知识助手,结合知识回答:{question}"
prompt = PromptTemplate(template=template, input_variables=["question"])
# 初始化模型、Memory、链
llm = ChatOpenAI()
memory = ConversationBufferMemory()
chain = LLMChain(llm=llm, prompt=prompt, memory=memory)
# 运行链
result = chain.run(question="公司年假制度是啥?")
print(result)
(4)部署与测试:让员工真能用起来
-
用 Flask 或 Streamlit 做一个简单网页界面;
-
员工输入问题,后台跑 LangChain 流程,前端显示答案;
-
测试多轮对话(比如 “刚才说的年假天数,是按自然年还是工作日算?”),看看系统是否能 “记住” 并回答。
3. 项目价值:解放员工,提升效率
-
员工不用翻文档,直接提问得答案,效率提升 80%;
-
知识更新时,只需更新知识库,系统自动同步;
-
支持多轮对话,复杂问题也能 “聊明白”,像和同事唠嗑一样。
四、总结:LangChain 不难,关键是 “组件串联 + 实战落地”
LangChain 看着组件多,其实核心逻辑就一个:把大模型应用拆成 “小积木”,让咱普通人也能轻松组合出 AI 工具 。不管是搞副业做聊天机器人,还是帮公司优化流程,抓住这些核心组件,上手真不难。
想试试的朋友,建议从 “搭个简单问答机器人” 开始,用 LangChain 连自己的笔记、文档,感受下 “让 AI 懂你数据” 的爽感!遇到问题别慌,组件都是模块化的,拆开来调一调,慢慢就通了。
最后说一句:AI 时代,工具越用越顺,思路越玩越开.LangChain 就是咱普通人 “玩赚大模型” 的敲门砖,大胆试、别怕错,搞出自己的 AI 应用,超有成就感。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓