在Spark中进行数据分析,数据预处理和清洗是必不可少的步骤,以下是一些常用的方法:
- 去除重复行
- 去除空值
- 替换空值
- 更改数据类型
- 分割列
- 合并列
- 过滤行
1. 去除重复行
去除重复行可以使用DataFrame的dropDuplicates()
方法,例如:
df = df.dropDuplicates()
2. 去除空值
去除空值可以使用DataFrame的dropna()
方法,例如:
df = df.dropna()
可以通过指定参数subset
来选择需要去除空值的列,也可以通过指定参数how
来选择去除空值的方式,例如: