Spark中数据预处理和清洗的方法(python)

在Spark中进行数据分析,数据预处理和清洗是必不可少的步骤,以下是一些常用的方法:

  1. 去除重复行
  2. 去除空值
  3. 替换空值
  4. 更改数据类型
  5. 分割列
  6. 合并列
  7. 过滤行

1. 去除重复行

去除重复行可以使用DataFrame的dropDuplicates()方法,例如:

df = df.dropDuplicates()

2. 去除空值

去除空值可以使用DataFrame的dropna()方法,例如:

df = df.dropna()

可以通过指定参数subset来选择需要去除空值的列,也可以通过指定参数how来选择去除空值的方式,例如:

# 去除age和gender列中的空值
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据海中游泳的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值