自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(593)
  • 资源 (2)
  • 收藏
  • 关注

原创 CompileAgent: Automated Real-World Repo-Level Compilation with Tool-Integrated LLM-based Agent Syste

Multi-Agent Discussion:尽管存在各种用于解决推理任务的单代理方法,如自我完善(Xi等人,2023b)、自我反思(Yan等人,2024)、自我一致性(Wang等人,2024a)和选择推理(Creswell等人,2022),但本文认为这些复杂的推理方法对于解决编译错误是不必要的。在本文中,本文为讨论设置了三个代理,最多3轮。在本文中,提出了CompileAgent,这是首个专为仓库级编译设计的基于LLM的代理框架,它集成了五种工具和一种基于流程的代理策略,使LLM能够与软件工件交互。

2025-07-17 08:15:00 664

原创 Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables论文分享

相反,本文发现,在文件末尾追加字节会降低基于梯度方法的有效性。这是合理的,因为文件长度各不相同,且随着离文件起始字节越来越远,找到可用于区分恶意软件和良性文件的信息性(非填充)字节的概率会降低。学习算法不能自动学习难 以操纵的、不变的信息,这些信息可靠地表征恶意软件, 如果不是主动设计的话,请记住这一点[4],要么提供适当的训练示例,要么对哪 些字节可能被恶意操作的先验知识进行编码。接下来,本文首先介绍所采用的实验设置,然后通过对比所提出的基于梯度的方法与简单随机字节添加的效率,对所得结果展开讨论。

2025-07-17 08:00:00 899

原创 Examining Zero-Shot Vulnerability Repair with Large Language Models论文分享

尽管近期研究[12]表明,使用LLM(如GitHub Copilot)生成的代码补全可能引入安全弱点,但Pearce等人总结认为,模型仍能“提高软件开发人员的生产力”,尤其是在生成过程中配合“适当的安全感知工具以最小化风险”[12]。程序修复中的一个众所周知的问题是,项目的回归测试是程序正确性的薄弱代理。开箱即用的编码LLM,如OpenAI的Codex[7]和AI21的Jurassic1[8],在包含大量注释[9]–[11]和功能(既有漏洞代码也有非漏洞代码)的多语言开源代码上进行训练。

2025-07-16 08:15:00 656

原创 DetectVul: A statement-level code vulnerability detection for Python论文分享

与之前为C/C++量身定制的基于GNN的方法不同,这些方法需要多个工具来构建图,本文的方法仅依赖抽象语法树(AST)进行数据处理,这使得将本文的工作扩展到其他编程语言非常容易。值得注意的是,与之前的方法(如[8,14,17,23])不同,这些方法使用预训练的特征提取器,只训练基于GNN的分类器模型,在本文的研究中,本文将两者集成到一个模型中,并对模型进行端到端训练。为此,在提出的架构中,本文通过用灵活的类BERT架构替换GNN模型来消除对图的依赖,以学习代码片段或函数中语句之间的复杂关系。

2025-07-16 08:00:00 1011

原创 研究生算法选做作业凸包 python版

优势代码结构清晰,符合Pythonic风格正确处理共线点和退化情况支持交互式输入和随机测试适用场景计算几何基础算法教学小规模点集(n<10^4)的快速计算需要可视化验证的场景这段代码完整实现了凸包计算的核心逻辑,通过Python特有的语法特性简化了部分实现,但在排序策略和共线点处理上存在可优化空间。理解其与C++版本的差异有助于深入掌握Graham扫描算法的本质。

2025-07-15 08:15:00 792

原创 研究生算法选做作业凸包 C++版

int x, y;Point base;// 比较函数if (c!// 找到基点i < n;++i) {// 排序其他点// 过滤共线点i < n;++i) {i++;// 构建凸包i < n;cin >> n;i < n;

2025-07-15 08:00:00 618

原创 【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业 latex+pdf

在我的代码实现问题情景下,n是用户指定输入的,接着用户可以输入相应的n个点的坐标,如果n输入-1,那么就随机生成n以及n个点的坐标,同时输出告诉用户相应的n值和n个坐标的值。Python 版本的输入输出(随机输入)如图~\ref{fig:python} 所示。\title{\heiti《算法分析与设计》选做作业} % ctex已集成黑体。C++ 版本的输入输出(用户指定输入)如图~\ref{fig:cpp} 所示。\caption{Python 实现}\caption{C++ 实现}

2025-07-14 08:15:00 1293

原创 【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业 latex+pdf

\max_{\substack{l \leq m < r \\ 0 \leq t < k}} \mathcal{DP}[l][m][t] \times \mathcal{DP}[m+1][r][k-t-1] & \text{(乘法分割)} \\。&\max_{\substack{l \leq m < r \\ 0 \leq t \leq k}} \mathcal{DP}[l][m][t] + \mathcal{DP}[m+1][r][k-t] & \text{(加法分割)}

2025-07-14 08:00:00 641

原创 【算法分析与设计】研究生第二次算法作业:基于分治策略的有序数组中位数查找与逆序对计数 latex源码和pdf

给定实数序列$A=\{a_1,a_2,...,a_N\}$,若存在下标$i<j$且$a_i>a_j$,则称有序对$(a_i, a_j)$为一个逆序对。\text{Median} = \frac{\text{第}n\text{小元素} + \text{第}(n+1)\text{小元素}}{2}逆序对在序列中体现为满足$i<j$且$a_i>a_j$的有序对$(a_i,a_j)$。由主定理可得时间复杂度为$O(\log k)$。\item 当$X[i-1] < Y[j-1]$时,排除$X$前$i$个元素。

2025-07-13 08:15:00 942

原创 【算法分析与设计】研究生第一次算法作业latex源码+pdf

设 \( F(N) = O(c f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。已知 \( g(N) = O(f(N)) \),即存在正常数 \( C_1 \) 和 \( N_1 \),对任意 \( N \geq N_1 \),有。设 \( G(N) = O(g) \),则存在正常数 \( C_2 \) 和 \( N_2 \),对任意 \( N \geq N_2 \),有。因此,\( O(c f(N)) = O(f(N)) \)。

2025-07-13 08:00:00 1526

原创 研究生算法第二次作业第二题 python版

这段Python代码实现了与之前C++代码相同的核心功能——使用归并排序算法高效计算数组中的逆序对数量。arr = list(map(int, input("请输入数组元素,空格分隔:").split()))这段代码通过归并排序的合并过程自然统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法思想的典型实现。print("随机生成的数组:", arr)n = int(input("请输入n的值:"))print("输入长度不匹配!print("逆序对数目:", total)

2025-07-12 08:15:00 971

原创 研究生算法第二次作业第2题 C++版

该代码通过归并排序的合并过程自然地统计逆序对,既保持了算法的高效性,又准确解决了问题,是分治算法的典型应用案例。cout << "逆序对数目:" << countInversions(temp) << endl;这段C++代码实现了使用归并排序算法高效计算数组中逆序对数量的功能。cout << "请输入数组元素(空格分隔):";cout << "随机生成的数组:";cout << "请输入n的值:";

2025-07-12 08:00:00 739

原创 研究生算法第二次作业第一题 算法实现 python版

X = list(map(int, input("请输入X数组(已排序): ").split()))Y = list(map(int, input("请输入Y数组(已排序): ").split()))n = int(input("请输入n(输入-1随机生成): "))print("中位数为:", find_median(X, Y))print("错误:数组长度不等于n")print(f"随机生成n={n}:")print("X数组:", X)print("Y数组:", Y)

2025-07-11 08:15:00 663

原创 研究生算法第二次作业第一题 算法实现 C++版

cout << "请输入n(输入-1随机生成): ";cin >> n;i < n;++i) {cout << "随机生成n=" << n << ":\nX数组: ";cout << "\nY数组: ";} else {cout << "请输入X数组(已排序): ";i < n;cin >> num;

2025-07-11 08:00:00 875

原创 LLM4Decompile: Decompiling Binary Code with Large Language Models论文分享

• 改 进 了 精 化 - 反 编 译 方 法 来 微 调 LLM4Decompile-Ref 模型,使它们能够有效 地 精 化 Ghidra 的 反 编 译 结 果 , 并 在 LLM4Decompile-End 的基础上实现了 16.2% 的可重用性增强。• 优化了 LLM 训练流程,并推出了 LLM 反 编译端模型,这为直接二进制反编译设定了 新的性能标准,在 HumanEval 和 ExeBench 基准测试中的可重用性方面,显著超过了 GPT-4o 和 ghidra 100%以上。

2025-07-10 08:00:00 1040

原创 Large Language Model for Vulnerability Detection and Repair:Literature Review and the Road Ahead论文分享

通过回答三个关键研究问题,我们旨在(1)总结相关文献中使用的大型语言模型,(2)对漏洞检测中的各种大型语言模型适应技术进行归类,(3)对漏洞修复中的各种大型语言模型适应技术进行归类。对于像CodeBERT这样的轻量级LLM,研究人员已探索了各种策略来提高其性能,包括以数据为中心的增强、以模型为中心的创新、与程序分析的结合、将LLM与其他深度学习方法结合、特定领域的预训练、因果学习和强化学习。本文是一篇综述,主要是对结合大模型的漏洞检测和修复技术的总结和展望,个人认为总结的比较全面,值得一看。

2025-07-10 08:00:00 1006

原创 研究生算法第三次作业第二题

该代码通过动态规划解决了连续子序列分割问题,目标是最小化分割后子序列的最大值,同时确保每个子序列的和不超过B。尽管状态转移方程中的加法操作看似不合理,但通过实际测试验证了其正确性。关键在于动态规划数组dp的定义和状态转移的巧妙设计,使得最终结果正确。

2025-07-09 08:15:00 915

原创 研究生算法第三次作业第一题

该代码通过动态规划高效解决了在数组中插入乘号以最大化乘积的问题。预处理区间和、三维DP数组设计以及分割点的枚举是算法的核心,能够处理包含加号和乘号的混合表达式优化问题。

2025-07-09 08:00:00 846

原创 Large Language Model for Vulnerability Detection: Emerging Results and Future Directions论文分享

而且本文还提到了应用LLM技术的一种挑战:与开发人员的信任和协同。本篇论文利用chatgpt3.5和chatgpt4实现了一种物联网漏洞检测的方法,尽管LLM的生成结果是不具备稳定性的,但是在取均值后依旧给出了较好的结果,其中chatgpt3.5和现有检测方法有一竞之力,而chatgpt4优于现有方法。对于未来本文的研究重心将会是:1)探索LLM(特别是ChatGPT)是否可以有效地检测这些不常见的漏洞,2)提出一种解决方案(例如,通过数据增强为不太常见的类型生成更多样本),以解决漏洞数据长尾分布的影响。

2025-07-08 08:15:00 591

原创 Demystifying RCE Vulnerabilities in LLM-Integrated Apps论文分享

今天分享的论文是《Demystifying RCE Vulnerabilities in LLM-Integrated Apps》原文链接:Demystifying RCE Vulnerabilities in LLM-Integrated AppsPrompt模板:https://sites.google.com/view/llmsmith/这是一篇关于LLM安全的论文,主要是对于LLM驱动APP的远程代码执行漏洞的检测和实施分析,针对的是python。(文章中表述了主流LLM APP很多都是python

2025-07-08 08:00:00 966

原创 Software Vulnerability Detection using Large Language Models论文分享

确保软件产品的安全性是这种模式成功的关键因素。本文介绍了一系列实验,将四种知名的大语言模型应用于两个广泛引用的公共数据集,以评估大语言模型在检测软件漏洞方面的性能。这一观察结果为未来的研究指明了一个有前景的方向,即结合大语言模型的自动模式发现能力和严谨的程序分析,以实现更准确、自动化的漏洞检测。虽然有传闻报道使用ChatGPT(直接提示的大语言模型)检测软件漏洞,也有初步(未经同行评审)的报告介绍使用Transformer模型检测软件漏洞,但目前还没有在实验环境下使用大型数据集进行比较评估并发表的成果。

2025-07-07 08:15:00 755

原创 Prompt-Enhanced Software Vulnerability Detection Using ChatGPT论文分享

在本文中,我们研究了经过提示增强的ChatGPT在软件漏洞检测方面的能力,这是确保软件安全的一项重要任务。我们在两个收集的覆盖Java和C/C++程序的漏洞数据集上,将ChatGPT与两种最先进的漏洞检测方法CFGNN[4]和Bugram[3]进行了比较。我们在基本提示的基础上补充了各种提示,包括添加源代码的结构和顺序辅助信息,如数据流图(DFG)和API调用序列,并设计了链式思考提示来调查ChatGPT在我们收集的覆盖两种编程语言的漏洞数据集上的漏洞检测能力。上述程序是否有错误?,然后调用ai,……

2025-07-07 08:00:00 1490

原创 Chain of Agents: Large Language Models Collaborating on Long-Context Tasks论文分享

例如,上下文窗口从GPT-2的1024个令牌[51]、GPT-3的2048个令牌[7],增加到了GPT-4的128k个令牌[45]。接下来,为了实证验证从左到右的阅读顺序能产生最佳性能,我们评估了其他阅读顺序,包括从最后一个块到第一个块的从右到左(Right-to-Left)阅读顺序,以及随机顺序(Permutation)的阅读顺序。相比之下,CoA对此问题表现出更强的抵抗力,性能差距更窄,为4.89(±1.91),这表明CoA通过为每个智能体提供更短的上下文以供其关注,从而有效地缓解了这一问题。

2025-07-06 08:15:00 1073

原创 Chain-of-Thought Prompting of Large Language Models for Discovering and Fixing Software Vulnerabilit

今天分享的论文是:Chain-of-Thought Prompting of Large Language Models for Discovering and Fixing Software Vulnerabilities原文链接: https://arxiv.org/pdf/2402.17230数据集和源代码:Assessing and Improving Prompting Large Language Models for Software Vulnerability Analysis这篇论文是关于

2025-07-06 08:00:00 930

原创 Software Vulnerability Detection with GPT and In-Context Learning论文分享

希望在大语言模型中采用类似的方法。为了测试代码检索方法对方法的影响,在模型中测试了两种检测方法TF - IDF和BM - 25在代码漏洞检测方面的性能。1. 提出了一种新颖的基于GPT的漏洞检测模型VUL - GPT,通过利用TF - IDF和BM - 25找到与测试代码相似的代码片段,分析测试代码的结构,并将其纳入GPT的上下文,增强了GPT的漏洞检测能力。RQ3的答案:实验结果表明,不同的检索方法,如TF - IDF和BM - 25,对VUL - GPT在Devign数据集上的性能影响极小。

2025-07-05 08:15:00 670

原创 清华保研个人自述

大二学年,即便需要同时学习大二以及大一的专业课,我依旧获得了优秀的课业成绩,累计到现在,我的平均成绩为95.3418/100,GPA为3.91/4.0,专业排名为6/149(前4%),被评为大学优秀生。为此,我认为自己已经具备了必需的数学和编程基础,同时我的英语能力也为未来的研究生阶段做好了准备,四级分数687,三次参加全国大学生英语竞赛均获得不错的成绩,除了基础英语水平之外,科研所必须的英语阅读和理解能力也在学校所开设的双语和全英课中得到了良好的培养,如编译方法(双语)、算法设计与分析(全英)等。

2025-07-05 08:00:00 873

原创 VulEval: Towards Repository-Level Evaluation of Soffware Vulnerability Detection论文分享

此 外,对于七种依赖关系检索方法 经过研究,发现基于词汇的方法比基于语义的方法在识别与 漏洞相关的依赖性方面产生更好的结果。然而,现有的随机分割设置可能会导致数据泄漏的风险和性能膨胀 的可能性,这最终会损害漏洞检测方法的可靠性,并反映了现实世界软件开发环境中存在的挑战。(2)对于 RQ2,使用基于词法的方法来识别与漏洞相关的依 赖性,会导致比其他基于语义的方法相对更好的性能。现有的漏洞检测方法可以分为四类:基于程序分析的方法、基于监督学习的方法、基于微调的方法和基于提示的方法。

2025-07-04 08:15:00 978

原创 Pre-training by Predicting Program Dependencies for Vulnerability Analysis Tasks论文分享

对于漏洞检测,当前最先进的方法通常先借助静态分析工具(如Joern)提取程序依赖图(PDG),再基于PDG将程序表示为不同形式,例如代码片段、基于语法的表示、基于语义的向量表示或图结构表示,随后利用双向长短期记忆网络(Bi-LSTM)、卷积神经网络(CNN)或图神经网络(GNN)等不同神经模型提取输入程序的特征向量以实现漏洞检测。此外,本文的预训练技术可以被视为训练模型学习Joern的程序依赖分析知识,这仍然是有益的(如本文的外在评估所示)。此外,先前的工作表明,数据污染可能对预训练模型的性能影响很小。

2025-07-04 08:00:00 1045

原创 Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG

此 外,Vul-RAG 的另一个可推广性问题发生在构建的知识库不包含被检 测代码的相关知识的情况下,这引起了对提取的漏洞知识是否可以 推广到检测来自不同 CVE 的代码片段的关注。第三,Vul-RAG 利用 LLMs,通过推理 漏洞原因的存在和修复检索到的漏洞知识的解决方案,来检查给定代 码 snip- pet 的漏洞。在本文中,提出了一种新的基于 LLM 的漏洞检测技术 Vul-RAG, 它利用知识级检索增强生成(RAG)框架来检测给定代码的漏洞。]:一个广泛使用的开源静态分析工具。

2025-07-03 08:15:00 1295

原创 Understanding and Tackling Label Errors in Deep Learning-Based Vulnerability Detection (Experience P

这些方法简单地将提交前版本中包含删除或修改行的函数或语句标记为易受攻击的(1),提交后版本中的相应函数或语句标记为干净的(0),未修改的函数或语句也标记为干净的(0)。从“坏的”或“混合”程序中提取的样本,如果样本包含至少一个易受攻击的语句,则被标记为易受攻击的(1),否则为非易受攻击的(0)。为此,本文系统地分析了最先进的基于学习的漏洞检测方法所使用的多样化数据集,并研究了它们收集易受攻击的源代码数据集的技术。随之而来的现象是,一些非标准的提交消息描述将导致基于规则的方法收集一些与错误修复无关的提交。

2025-07-03 08:00:00 929

原创 Uncovering the Limits of Machine Learning for Automatic Vulnerability Detection论文分享

VulnPatchPairs的分割源自CodeXGLUE的分割,使得CodeXGLUE的训练、验证和测试集中的所有且仅有的易受攻击函数分别作为VulnPatchPairs的训练、验证和测试集,并通过其相应的补丁进行扩充。然而,正如本文自己的实验所表明的,同样是这些表现顶尖的模型,却无法区分包含漏洞的函数和已修补漏洞的函数。然而,本文实现的特定转换仅仅是一个工具,用于证明训练数据增强所获得的性能仅适用于训练中使用的特定转换,并且本文研究的技术过拟合到这些转换引入的与标签无关的特征。

2025-07-02 08:15:00 1156

原创 Trustworthy and Synergistic Artificial Intelligence for Software Engineering: Vision and Roadmaps论文分享

因此,SE 2.0的演进和实现不仅需要软件工程和计算机科学领域的贡献,还需要更广泛的学术和专业领域的参与。尽管最初的自动化工作集中在程序分析方法的开发上,例如代码检查工具(linters)[1]、模型检查器[2],[3]、模糊测试工具(fuzzers)[4]等,但在过去二十年中,设计和部署AI驱动的解决方案以协助软件从业者完成任务的趋势迅速上升。三股不同的创新浪潮塑造了AI4SE的发展轨迹:软件工程大数据的激增、深度学习融入AI4SE解决方案的设计,以及最近基于大型语言模型的AI4SE解决方案的发展。

2025-07-02 08:00:00 818

原创 Distinguishing Look-Alike Innocent and Vulnerable Code by Subtle Semantic Representation Learning an

在本文中,本文提出了一种名为SVulD的新方法,即用于漏洞检测的函数级细微语义嵌入方法,并附带直观解释,以缓解上述限制。三元组网络的第二层是基于余弦距离算子的损失函数,带有投影器的变换操作,用于最小化相似函数之间的距离,最大化不相似函数之间的距离。其次,所有研究的数据集都是从开源项目收集的,SVulD 在商业项目上的性能未知。特别是,它在 F1 分数和 PR-AUC 上取得了压倒性的结果,这表明配备对比学习和预训练模型的 SVulD 具有更强的学习函数语义的能力,尤其是对于那些词法相似但语义不同的函数。

2025-07-01 08:15:00 1114

原创 Deep Learning Based Vulnerability Detection: Are We There Yet?论文分享

通过系统调查导致这种性能急剧下降的原因,本文发现现有的基于深度学习的漏洞预测方法面临着训练数据方面的挑战(如数据重复、漏洞类别的不真实分布等)和模型选择方面的挑战(如简单的基于标记的模型)。例如,Li等人[3]提出了一种基于双向长短期记忆(BSLTM)的模型,Russell等人[5]提出了一种基于卷积神经网络(CNN)和随机森林的模型,并与基于循环神经网络(RNN)和CNN的基线模型进行了漏洞预测比较。在本文中,系统地研究了基于深度学习的漏洞检测的不同方面,以有效地发现真实世界的漏洞。

2025-07-01 08:00:00 1377

原创 LineVD: Statement-level Vulnerability Detection using Graph Neural Networks论文分享

识别潜在的软件漏洞是防御网络攻击的关键步骤。或者,本文旨在探索直接在语句级别训练和预测SVD粒度细化的可行性和有效性,这将允许数据驱动的解决方案以完全监督的方式直接利用任何可用的语句级信息。将GNN用于漏洞建模最初受到Yamaguchi等人提出的漏洞发现方法的启发,该方法使用代码属性图,这是一种结合程序依赖边、控制流边和程序抽象语法树的程序图,提供了额外的信息来源供学习。此外,人们认识到,在基于软件指标和基于模式的方法作为数据驱动的SVD解决方案的两个不同类别中,其中一些可能具有提供细粒度预测结果的潜力。

2025-06-30 08:15:00 812

原创 How Effective Are Neural Networks for Fixing Security Vulnerabilities论文分享

本文的工作不同,因为本文使用真实世界的漏洞数据集进行评估,使本文的结果更接近研究人员和开发人员在现实世界生产代码中对大型语言模型漏洞修复质量的期望。本文在两个Java漏洞基准(Vul4J和本文创建的新VJBench)上评估了五种LLM(Codex[1]、CodeT5[73]、CodeGen[55]、PLBART[8]和InCoder[28])、四种使用通用APR数据微调的LLM,以及四种APR技术(CURE[40]、Recoder[76]、RewardRepair[75]和KNOD[39])。

2025-06-30 08:00:00 1010

原创 Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vul

今天分享的论文是《Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection》原文链接:Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection这

2025-06-29 08:15:00 758

原创 Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities

在本文中,通过检查更大和更多样化的数据 集、语言和 LLM,并定性地评估跨提示和漏洞类别的检 测性能,进行了更全面的研究。结果表明,所有规模和家族的 LLM 在关于漏洞 的端到端推理中表现出适度的有效性,在所有数据集上 获得了 62.8%的平均准确率和 0.71 的 F1 分数。:开展了迄今为止规模最大的综合性研究,探究最先进的大型语言模型(LLMs)在从五个数据集的5000个样本中检测安全漏洞时的表现,这些样本涵盖两种编程语言(C/C++和Java),并涉及25种独特的漏洞类别。

2025-06-29 08:00:00 876

原创 Learning Convolutional Neural Networks for Graphs论文分享

其次,对于从计算生物学到社交网络分析的许多应用,可视化学习到的网络基序(Milo等人,2002)很重要,PATCHY-SAN支持特征可视化,提供对图结构属性的洞察;类似于在输入的局部连接区域上运行的基于图像的卷积网络,本文提出了一种从图中提取局部连接区域的通用方法。这些邻域被高效生成,并作为卷积架构的感受野,使框架能够学习有效的图表示。1. 给定图的集合,学习一个可用于未见过的图的分类和回归问题的函数。例如,集合中的每个图可以表示一种化学化合物,输出可以是将未见过的化合物映射到其对癌细胞活性水平的函数。

2025-06-28 08:15:00 436

原创 Visualizing Data using t-SNE论文分享

Sammon映射(Sammon,1969)试图解决经典缩放的问题,它通过将每个成对欧氏距离表示中的平方误差除以高维空间中的原始欧氏距离来修改经典缩放的成本函数,得到的成本函数其中求和外的常数是为了简化梯度推导而添加的。此外,与随机游走版本的t-SNE不同,扩散映射没有选择随机游走长度\(t\)的自然方法。当将数据降至2或3维时,t-SNE的行为无法轻易外推到d>3维,因为学生t分布的重尾特性在高维空间中,学生t分布的重尾占概率质量的比例相对较大,这可能导致d维数据表示不能很好地保留数据的局部结构。

2025-06-28 08:00:00 967

KARONTE论文分享PPT

KARONTE论文分享PPT

2025-06-12

大学生学业科研奖学金答辩PPT

大学生学业科研奖学金答辩PPT

2025-06-09

本科生智能奖学金申请答辩PPT

本科生智能奖学金申请答辩PPT

2025-06-08

大学生春季奖学金答辩PPT

大学生春季奖学金答辩PPT

2025-06-08

清华网研院保研面试PPT

清华网研院保研面试PPT

2025-05-28

省三好学生答辩PPT+讲稿

省三好学生答辩PPT+讲稿

2025-06-03

国家奖学金答辩PPT+文稿

国家奖学金答辩PPT+文稿

2025-06-02

跨平台物联网漏洞挖掘算法评估框架设计与实现 项目结项答辩PPT+讲稿

跨平台物联网漏洞挖掘算法评估框架设计与实现 项目结项答辩PPT+讲稿

2025-05-31

大学生支教创作课程PPT

大学生支教创作课程PPT

2025-05-31

《GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing》论文分享、阅读、详解PPT+讲稿

《GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing》论文分享、阅读、详解PPT+讲稿

2025-05-27

国内人工智能行业研究PPT

国内人工智能行业研究PPT

2025-05-17

学位英语期末课程汇报 keynote部分

学位英语期末课程汇报 keynote部分

2025-04-15

儿童节烟花代码2python实现

代码实现了一个简单的控制台烟花动画效果,用于庆祝儿童节。这里使用了ANSI转义序列来改变文本颜色,以及随机选择字符和位置来模拟烟花的爆炸效果: 清屏方式:在Windows的cmd或PowerShell中,\n * console_height可能不足以清屏。可以使用os.system('cls')(Windows)或os.system('clear')(Unix/Linux/macOS)来清屏,但请注意,这会在执行时闪烁屏幕。另一种方法是使用更复杂的库,如curses(Unix-like)或colorama(跨平台)。 性能问题:每次打印都会刷新整个屏幕,这可能会导致动画看起来卡顿。使用curses库可以避免这个问题,因为它允许在屏幕上直接绘制和更新字符,而不是每次都重新打印整个屏幕。 颜色重置:已经正确地使用了颜色重置序列\033[0m,这是很好的实践。 代码结构:代码结构清晰,函数划分合理。 用户交互:使用input()函数等待用户按键后退出是一个简单的用户交互方式。 下面是一个使用colorama库(需要事先安装:pip inst

2025-01-15

儿童节烟花代码python实现

代码已经很好地实现了在控制台上打印出“儿童节快乐!”的祝福语,并跟随五个烟花表情符号的功能。不过,为了确保烟花表情符号\U0001F386在不同的终端或编辑器中都能正确显示: 确保终端支持Unicode:大多数现代终端和编辑器(如VSCode、PyCharm、Jupyter Notebook等)都支持Unicode字符,但一些老旧的或特定配置的终端可能不支持。 调整输出格式:您的代码已经通过在烟花后面加一个空格来避免表情符号过于紧凑,这是很好的实践。如果希望进一步美化输出,可以考虑添加换行符\n或调整烟花之间的空格数量。 增强可读性和趣味性:除了简单的打印,还可以考虑添加一些动画效果或更多的装饰性文字,使输出更加生动有趣。 下面是一个稍微修改后的版本,其中增加了换行符,使得每个烟花表情符号都单独占一行,同时保持了原有的祝福信息: python print("儿童节快乐!") # 使用Unicode烟花表情符号 firework_emoji = "\U0001F386" # 烟花 for _ in range(5): # 重复输出5次

2025-01-15

分布式Client:client

一个名为UserDataTypeListener的类,该类继承自DataReaderListener并重写了on_data_available方法以处理数据读取。此外,还提供了publisher_shutdown函数用于清理资源,以及publisher_main函数的框架 UserDataTypeListener 类 内存管理: 在on_data_available方法中,正确删除了data_seq中每个元素的字符串成员。然而,这通常意味着AverageGradeSeq(以及其中的AverageGrade对象)负责管理这些字符串的内存。如果AverageGradeSeq或AverageGrade是通过某种智能指针或类似机制管理内存的,那么手动删除这些字符串可能是不必要的,甚至可能是危险的。 应该检查AverageGrade和AverageGradeSeq的内存管理策略,以确保删除操作是正确和必要的。

2025-01-10

分布式Server:Server

这段代码是一个使用DDS(Data Distribution Service,数据分发服务)API的订阅者应用示例。DDS是一种中间件协议,用于在分布式系统中发布和订阅数据。该代码示例展示了如何创建一个订阅者,接收Grade类型的数据,计算三个成绩的平均值,并将结果以AverageGrade类型的数据发布出去。以下是对代码主要部分的解析和一些潜在问题的指出: 主要部分解析 创建参与者(Participant): 使用DomainParticipantFactory创建一个参与者,该参与者在指定的域ID中运行。 创建订阅者(Subscriber)和发布者(Publisher): 在参与者下分别创建订阅者和发布者。 注册数据类型: 注册Grade和AverageGrade数据类型,这是DDS通信的基础。 创建主题(Topic): 为Grade和AverageGrade数据类型分别创建主题。 创建数据读取器(DataReader)和数据写入器(DataWriter): 在订阅者下创建Grade数据读取器,在发布者下创建AverageGrade数据写入器。 数据接收与处理: 在UserDat

2025-01-11

分布式Server:IDL-ssgrade

这段代码定义了两个类,Grade 和 AverageGrade,它们分别用于表示单个学生的成绩和三个学生成绩的平均值。这两个类都支持拷贝构造函数、赋值操作符重载、以及序列化和反序列化操作。这里使用的是一种类似于CORBA(Common Object Request Broker Architecture,公共对象请求代理体系结构)中的CDR(Common Data Representation,通用数据表示)机制来进行数据的序列化和反序列化。 Grade 类 拷贝构造函数:接收一个Grade对象作为参数,将它的name(姓名)、ID(学号)和score(成绩)复制到新对象中。 赋值操作符重载:检查自赋值情况,然后将右侧对象的name、ID和score复制到左侧对象中。 Marshal 方法:用于序列化Grade对象的数据到CDR流中。它将name和ID作为字符串,score作为浮点数写入CDR流。 UnMarshal 方法:用于从CDR流中反序列化Grade对象的数据。它从CDR流中读取字符串作为name和ID,读取浮点数作为score。注意,这里在赋值前会检查name和ID是否已分

2025-01-11

分布式Server:IDL-DataWriter

这段代码展示了两个类GradeDataWriter和AverageGradeDataWriter的实现,它们都继承自一个基类DataWriter。这两个类分别用于写入特定类型的数据(成绩和平均成绩)到某个数据接收端。 GradeDataWriter 类 构造函数和析构函数:GradeDataWriter的构造函数接收一个DataWriterImpl类型的指针,并将其传递给基类DataWriter的构造函数。析构函数是空的,没有特殊的资源释放操作。 narrow 方法:这是一个静态转换方法,尝试将传入的DataWriter指针转换为GradeDataWriter类型。如果转换失败(即传入的指针不是GradeDataWriter类型或其派生类的实例),则返回NULL。 write 方法:该方法接收一个Grade类型的对象和一个实例句柄(InstanceHandle_t),然后将这个对象序列化(通过调用Marshal方法),并在序列化数据前添加4个字节的额外数据(其中第二个字节被设置为0x01),最后调用基类的write方法将处理后的数据写入。这个方法涉及到动态内存分配,并在最后释放了

2025-01-11

分布式Server:IDL-DataReader

这段代码是关于数据读取的,特别是在数据分发服务(DDS,Data Distribution Service)或类似中间件环境下使用的。它定义了两种数据读取器:GradeDataReader 和 AverageGradeDataReader,用于读取不同类型的数据(成绩和平均成绩)。 GradeDataReader 类 析构函数:标准的析构函数,用于清理资源,但在这个例子中并未展示具体资源清理的代码。 narrow 函数:这是一个静态函数,用于将基类 DataReader 的指针或引用转换为 GradeDataReader 类型的指针。这是DDS中常见的做法,用于在运行时确定具体的DataReader类型。 take 函数:从数据源中批量获取成绩数据。它使用 DataReader 的 take 方法获取原始数据,然后逐个解析这些数据到 GradeSeq 序列中。解析是通过创建 CDR(Common Data Representation)对象完成的,这是一个用于数据序列化和反序列化的工具。 read 函数:与 take 类似,但 read 通常表示一种非破坏性读取,即读取的数据在下一次

2025-01-11

分布式Client:IDL-ssgrade

这段代码定义了两个类,Grade和AverageGrade,它们都提供了拷贝构造函数、赋值操作符重载、以及Marshal和UnMarshal方法。这些方法通常用于序列化和反序列化对象,以便在网络传输或持久化存储中使用。 Grade 类 拷贝构造函数:接收一个Grade对象作为参数,并复制其name、ID和score成员变量。 赋值操作符重载:首先检查自赋值情况,然后复制右侧对象的name、ID和score成员变量到左侧对象。 Marshal 方法:使用CDR(Common Data Representation)对象将Grade对象的name(作为字符串)、ID(同样作为字符串)和score(作为浮点数)序列化到CDR流中。 UnMarshal 方法:从CDR流中反序列化Grade对象。对于name和ID,它首先检查当前对象是否已经有对应的字符串分配了内存(虽然这里的检查逻辑看起来有些问题,因为新字符串是直接赋值的,而没有检查CDR返回的字符串是否需要释放旧内存——这通常意味着CDR应该负责管理字符串的内存)。然后,它从CDR流中读取新的字符串值,并直接赋值给成员变量(这里存在

2025-01-10

研究生算法期末大作业第三题第一问源代码

研究生算法期末大作业第三题第一问源代码

2025-07-16

研究生算法期末大作业第二题源代码

研究生算法期末大作业第二题源代码

2025-07-16

研究生算法期末大作业第一题第二问python

研究生算法期末大作业第一题第二问python

2025-07-15

研究生算法期末大作业第一题第一问python版

研究生算法期末大作业第一题第一问python版

2025-07-15

KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享

KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware顶会论文分享

2025-07-12

研究生算法选做作业凸包 python版

研究生算法选做作业凸包 python版

2025-07-09

研究生算法选做作业凸包 C++版

研究生算法选做作业凸包 C++版

2025-07-09

【算法设计与分析】基于Graham扫描法的二维平面点集凸包计算:研究生算法选做作业

内容概要:本文档是关于《算法分析与设计》课程中凸包问题的选做作业,详细介绍了使用Graham-scan算法思想实现凸包计算的方法。文档提供了C++和Python两种语言的具体代码实现,包括点的输入、基点查找、极角排序、共线点过滤以及最终构建凸包的过程。对于用户指定数量的点或随机生成点的情况都进行了考虑,确保程序能够适应不同场景下的需求。; 适合人群:计算机科学相关专业的研究生,以及对几何算法感兴趣的开发者。; 使用场景及目标:①理解并掌握Graham-scan算法的工作原理;②学习如何用C++和Python实现凸包算法;③通过实际编码练习加深对算法细节的理解;④提高解决几何问题的能力。; 阅读建议:建议读者先了解基本的几何概念和Graham-scan算法原理,再逐步阅读代码部分。对于每段代码,应结合注释理解其功能,同时可以尝试运行代码以增强实践能力。此外,还可以对比两种语言实现方式的异同,进一步提升编程技巧。

2025-07-04

研究生算法第三次作业第二题

研究生算法第三次作业第二题

2025-07-07

研究生算法第三次作业第一题 python版

研究生算法第三次作业第一题 python版

2025-07-07

研究生算法第二次作业第二题 python版

研究生算法第二次作业第二题 python版

2025-07-06

研究生算法第二次作业第2题 C++版

研究生算法第二次作业第2题 C++版

2025-07-06

【算法设计与分析】基于动态规划的算术表达式优化及序列划分问题求解:研究生第三次算法作业

内容概要:本文档是关于《算法分析与设计》课程的第三次作业,主要探讨两个算法问题。第一个问题是通过在给定的数字序列中插入乘法和加法运算符,以最大化最终表达式的值。该问题展示了动态规划的应用,包括状态空间定义、状态转移方程以及预处理优化。第二个问题是将整数序列划分成若干连续子段,每个子段的和不超过给定阈值,目标是最小化各子段最大值之和。该问题同样采用了动态规划的方法进行求解,并通过实例验证了算法的有效性。; 适合人群:计算机科学专业的研究生或具有相关背景的学生及研究人员。; 使用场景及目标:①理解动态规划在解决复杂组合优化问题中的应用;②掌握如何通过预处理和状态转移来提高算法效率;③学习如何利用数学归纳法证明算法的正确性。; 其他说明:此文档不仅提供了详细的算法设计思路,还包含具体的伪代码实现和复杂度分析,有助于深入理解动态规划的核心思想及其实际应用。建议读者结合理论学习与编程实践,以加深对动态规划的理解。

2025-07-04

【算法分析与设计】研究生第一次算法作业:大O符号性质的数学证明及应用

内容概要:本文档是《算法分析与设计》课程的第一次作业,主要内容为证明五个关于大O符号(渐近复杂度)的关系式。具体包括:1) O(f) + O(g) = O(f + g);2) O(f) · O(g) = O(f · g);3) 如果 g(N) = O(f(N)),则 O(f) + O(g) = O(f);4) O(cf(N)) = O(f(N));5) f = O(f)。每个关系式的证明都基于大O符号的定义,通过设定适当的常数和条件,逐步推导出结论。; 适合人群:计算机科学相关专业研究生或高年级本科生,尤其是正在学习算法分析与设计课程的学生。; 使用场景及目标:①帮助学生理解并掌握大O符号的性质及其证明方法;②提高学生的数学推理能力和算法分析能力;③为后续更复杂的算法设计与分析打下坚实的理论基础。; 其他说明:建议在阅读过程中结合具体的例子进行思考,以便更好地理解证明过程。同时,可以参考教材或其他资料加深对大O符号的理解。

2025-07-03

【算法分析与设计】基于分治策略的有序数组中位数查找与逆序对计数:高效算法设计及复杂度分析文档的主要内容

内容概要:本文档是《算法分析与设计》课程的第二次作业,主要包含两个题目。第一个题目是寻找两个有序数组的中位数,要求设计时间复杂度为O(log n)的分治算法,通过递归排除无关元素,最终找到合并后的中位数,并提供了C++和Python的代码实现。第二个题目是基于分治策略的逆序对计数算法,通过将数组分解为左右两部分,递归计算每部分的逆序对,并在合并过程中统计跨部分的逆序对,同样给出了C++和Python的实现代码,并详细分析了时间复杂度为Θ(n log n)。 适合人群:计算机相关专业的研究生或对算法设计与分析有一定基础的学习者。 使用场景及目标:①深入理解分治算法的应用,掌握如何通过分治法优化算法的时间复杂度;②学习并实践C++和Python两种语言的编程技巧,提高编程能力;③为后续更复杂的算法学习打下坚实的基础。 其他说明:文档不仅提供了详细的算法设计思路和伪代码,还附带了完整的代码实现,便于读者理解和实践。建议读者在学习过程中多加思考算法的设计思想,并动手实现代码,以加深对分治算法的理解。

2025-07-03

动态漏洞挖掘顶会论文分享PPT

动态漏洞挖掘顶会论文分享PPT

2025-06-15

流水作业调度问题的算法设计与分析PPT

流水作业调度问题的算法设计与分析PPT

2025-06-16

基于人工智能技术的行业研报

内容概要:本文档为东南大学金融投资协会举办的行业研报大赛报告,聚焦人工智能行业。报告详细阐述了人工智能的政策支持、人才需求、5G技术推动、AI芯片发展及深度学习的应用。自2017年起,人工智能连续被纳入政府工作报告,强调政策持续优化促进行业发展。随着技术进步,AI人才需求大幅增长,特别是高技术服务和制造业领域。5G商用加速了AI技术的应用,AI芯片在2020年实现了大规模落地,深度学习成为推动各行业创新的核心技术。此外,报告还探讨了chatgpt大模型结合、人工智能教育、无人驾驶及AI在金融场景的应用,提出关注这些领域的投资机会,并提醒注意政策变化和AI伦理法规的风险。 适合人群:对人工智能行业感兴趣的投资者、创业者、科研人员及相关政策制定者。 使用场景及目标:①帮助投资者理解人工智能行业的政策背景和发展趋势;②为企业提供技术应用和市场前景的参考;③为科研人员提供最新的技术发展方向和研究热点;④为政策制定者提供行业发展现状和未来趋势的依据。 其他说明:报告中提到的人工智能发展不仅依赖于技术创新,还需要关注政策导向和社会伦理问题。尤其在chatgpt大模型、无人驾驶等新兴领域,技术进步的同时也要重视数据隐私和安全问题。此外,人工智能教育的应用将有助于培养更多复合型人才,满足行业发展的需求。

2025-06-15

大学生网络安全宣讲课程PPT

大学生网络安全宣讲课程PPT

2025-06-13

计算机网络体系结构课程大作业论文

内容概要:本文深入探讨了计算机网络体系结构技术的核心原理与未来发展趋势,通过综合课程学习和广泛文献阅读,系统分析了该领域的技术架构、关键组件及其现实应用中的价值。文章指出,网络体系结构不仅涉及协议,还涵盖网络拓扑、系统信息处理方式、用户与终端的信息交换方式等多个方面。网络体系结构的确定对网络的性能与发展至关重要,它指导网络的发展方向,协调网络各部分有序发展,并确保设计准则不断接受检验和完善。文章还介绍了TCP/IP体系结构的局限性,如安全保障能力弱、可扩展能力不足、移动性支持差等,并探讨了未来网络体系结构可能的发展方向,如增强网络可信性、提高网络可控性等。此外,文章通过分析一篇高质量学术论文《Aequitas: Admission Control for Performance-Critical RPCs in Datacenters》,展示了如何通过加权公平排队(WFQ)机制在数据中心中实现高效的流量控制,确保高优先级流量的延迟服务等级目标(SLO)。; 适合人群:具备一定计算机网络基础知识的本科生、研究生及从事网络技术研究和开发的专业人士。; 使用场景及目标:①理解网络体系结构的定义及其在不同发展阶段的研究角度;②掌握TCP/IP体系结构的局限性及未来改进方向;③学习如何通过WFQ机制在数据中心中实现高效的流量控制,确保高优先级流量的延迟SLO;④探讨网络体系结构在低轨卫星互联网、无人机集群网络、蜂窝车联网、工业互联网等新型网络中的应用。; 其他说明:本文强调了计算机网络体系结构技术对人类社会信息化进程的重要支撑作用,并呼吁学术界与产业界加强合作,共同推动计算机网络体系结构技术的持续进步与发展,为构建网络空间命运共同体贡献力量。文章还展望了未来网络体系结构可能的发展方向,如高性能计算、量子计算、云计算与边缘计算的融合、网络智能化和自动化、以及基于SDN和NFV技术的网络架构等。

2025-06-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除