[信息论与编码]离散信源及其信息测度(2)

2021/11/23 from Xwhite

离散无记忆信源的扩展信源

信源模型

信源模型这里我们在上一篇文章已经叙述过了,在N次扩展哪里

信息熵

由于离散无记忆信源的扩展信源序列中前后符号的出现相互独立,彼此无关,因此有
请添加图片描述

符号序列中各符号取自同一个信源空间[X,P],故有
请添加图片描述

所以离散无记忆信源扩展信源的熵为H(XN)=NH(X)

离散无记忆信源扩展信源的熵和N长序列变量独立同分布的信源熵相同。

例题
请添加图片描述
请添加图片描述
例题
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值