2021/11/23 from Xwhite 离散信源及其信息测度(补充) 离散无记忆信源的扩展信源 信源模型 信息熵 离散平稳信源及极限熵(非重点) 离散平稳信源 极限熵 信息冗余度(了解) 信源的相关性与冗余度 离散无记忆信源的扩展信源 信源模型 信源模型这里我们在上一篇文章已经叙述过了,在N次扩展哪里 信息熵 由于离散无记忆信源的扩展信源序列中前后符号的出现相互独立,彼此无关,因此有 符号序列中各符号取自同一个信源空间[X,P],故有 所以离散无记忆信源扩展信源的熵为H(XN)=NH(X) 离散无记忆信源扩展信源的熵和N长序列变量独立同分布的信源熵相同。 例题 例题