怎么学习使用大模型?论大模型和汽车的关系

 大模型的使用就类似于汽车驾驶,只有有经验的老司机才能真正开好车。

随着人工智能技术的发展,大模型的应用范围越来越广,因此学习和使用大模型成了一个必不可少的技能。但很多人面对的问题是,不知道应该怎么学习大模型,因此我们今天就来讨论一下大模型的学习方式。

图片

怎么学习大模型

或许你可能并不懂人工智能,你也可能不懂大模型技术,但是你懂汽车驾驶吗?也就是开车。

工具思想

如果说你不知道应该怎么学大模型,甚至觉得它很高大上,不相信自己能学会它;那么你会开车吗? 如果你能学会开车,那么你就可以学会怎么使用大模型。

如果你对人工智能或者说大模型技术具有一定的心理障碍,觉得自己不是这个专业的人肯定也学不会这样高大上的技术;这时我们就要摆正心态,那么你要记住一句话:

没见过那个司机需要懂发动机制造或者汽车制造技术。

图片

大模型和汽车虽然有技术上的差别,但并没有本质上的差别;首先,它们同样都是技术的产物,而技术对我们人类来说就是一种工具。

人与动物最大的差别就是会使用和制造工具;虽然需要有一部分去制造工具,但更多的人只需要会使用工具即可。

而大模型和汽车就是别人制造出来的工具,而我们只需要学会使用它们即可。

工具的功能

要想学会和使用一个工具,我们首先需要知道这个工具都有哪些功能,也就是产品功能说明书。

当然,我们不论是在学车或者买车的时候,大部分人应该都没有看过汽车的完整说明书;对大模型也是一样,我想我们很多人应该也没真正去不同模型的官网上详细看过其说明。

汽车有哪些功能?

我们都知道汽车具有载人,拉货的功能;它的主要作用是作为交通工具来使用;而使用汽车的前提是要学会驾驶技术。

而大模型有哪些功能?

大模型的功能有内容生成功能,自然语言理解和生成功能,逻辑推理功能,多模态处理和工具使用的能力;当然这些能力都是大模型的原子能力,而其它的都是在此之上构建的具体任务场景。

图片

而就像使用汽车要学会驾驶技术一样,使用大模型要学会的是提示词技术(Prompt Engineering);提示词是人与大模型交互的唯一通道,不论是RAG,Function call还是现在爆火的MCP协议,都是通过提示词和大模型进行交互的。

可以说要想学会使用大模型,学会写提示词是其中必不可少的一环;这就像想使用汽车,就必须学会开车技能一样。

RAG技术利用的是大模型的自然语言理解和生成的能力;而Function call和MCP的作用是让大模型具备了使用外部工具(API)的能力。

对我们来说,模型开发企业就是大模型这个工具的制造者,类似于汽车行业的汽车制造商;它们造的车性能越强,越好开,价格越便宜,我们使用起来才越方便。

类似于小轿车,SUV和货车,它们都属于汽车;但它们所具备和擅长的功能却并不相同;小轿车适合拉人,而客车适合拉货。

图片

同样的,有的大模型擅长内容生成(DeepSeek的V2,V3模型),而有的大模型擅长逻辑推理(DeepSeeek的R1模型);它们擅长的领域不一样,我们使用起来的效果当然也不一样。

就像小轿车和货车都可以拉人拉货,但具体能拉的人和货却不一样。

所以,我们在学习和使用一个大模型时;就像我们选择买的车一样,我们首先要明白我们是想拉人还是想拉货,是想要更强的推理能力还是更强的生成能力。

然后怎么写提示词才能让大模型发挥出更强的能力和性能,这就类似于怎么开车才能动力更足,拉的货最多。

所以要想学好怎么使用大模型,没有别的办法,那就是多用,多研究,多思考;只有你开车开得够多,你才能知道什么样的路应该怎么走,怎么开更省油。

  如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值