想象一下,你能打造一个AI驱动的系统,秒速搜索海量数据,像人类一样理解语境,还能对复杂问题给出精准又聪明的回答。听起来像魔法?
其实不然——这就是FAISS DB和Langchain,两种正在改变人工智能版图的前沿技术。
如今,数据量爆炸式增长,传统搜索方法已经跟不上信息的庞大体量和复杂性。
FAISS DB(Facebook AI Similarity Search)横空出世,彻底革新了数据搜索与检索的方式。FAISS是一个专为快速、基于相似度的搜索设计的强大库。不管是处理文本、图片还是embeddings,FAISS都能让AI模型在眨眼间找到相关信息。
再来看Langchain——一个简化构建Large Language Model (LLM)应用的框架。Langchain能让开发者把AI系统的多个组件“串联”起来,比如prompt engineering、memory和FAISS这样的工具,打造出更动态、语境感知的应用。
在这篇博客里,我们将介绍10个用FAISS DB和Langchain打造的超酷项目创意,展示真实世界的应用,不仅能提升你的AI技能,还能让你在求职市场中脱颖而出。
这些项目将为你提供2025年抢占高需求AI职位的实用知识。
🧠 SmartDoc Finder
AI驱动的语义文档搜索
打造一个智能文档搜索工具,用户可以用日常英语提问,系统不仅返回文档列表,还能直接从文档中提取并推理出答案——利用FAISS DB和Langchain的强大功能和灵活性。
工具与技术
-
• FAISS:存储和检索文档的embeddings
-
• Langchain:处理LLM prompts、memory和逻辑的串联
-
• OpenAI / LLaMA / Claude:作为LLM后端(通过Langchain)
-
• Streamlit或React:快速优雅的前端界面
设计步骤
-
1. 数据摄入与预处理
-
• 上传PDF、doc或爬取的文本。
-
• 将文档切分为小块(例如500-1000个token),以获得更精确的embedding。
-
• 用Langchain封装的embedding模型(OpenAI、Hugging Face等)生成每个块的embeddings。
-
• 将所有向量embeddings连同引用存储到FAISS DB中。
-
-
2. 语义搜索
-
• 用户输入自然语言查询(例如:“AI在物流中的好处是什么?”)
-
• Langchain将查询转化为embedding向量。
-
• FAISS搜索出语义上最相似的N个文档块。
-
-
3. 智能回答
-
• Langchain将检索到的文档块作为上下文传递给LLM。
-
• LLM会:总结内容、提取答案,或围绕文档展开对话。
-
-
4. 用户界面与交互
-
• 显示搜索结果,包括:
-
• 高亮的源文档块
-
• 直接答案
-
• “继续提问”或“查看更多”的选项。
-
-
现实世界的应用
-
• 大型企业的内部文档搜索
-
• 智能客户支持(从手册、FAQ中提取答案)
-
• 学术论文搜索引擎
-
• 个人知识管理系统(Second Brain)
升级点子
-
• 添加文档标签和过滤(例如按日期、主题)。
-
• 针对公司特定语言或术语进行训练。
-
• 加入反馈循环,优化搜索质量。
🧠 NewsGenie
你的个性化AI新闻助手
打造一个新闻聚合器,不只是展示头条,而是能理解用户关心的内容,提供简短的摘要,定制语气、主题,甚至阅读时间,借助FAISS进行检索,Langchain驱动的LLM提供智能摘要。
工具与技术
-
• Langchain:串联embeddings、摘要和动态prompts
-
• FAISS:存储新闻块的语义embeddings
-
• News APIs(如NewsAPI、SerpAPI、自定义爬虫):获取最新内容
-
• 自定义爬虫:Firecrawl
-
• Hugging Face / OpenAI模型:用于摘要生成
-
• 用户偏好数据库:Firebase、MongoDB或Supabase
-
• 前端:React或Streamlit,提供流畅的用户体验
设计步骤
-
1. 新闻收集
-
• 通过爬虫或API从多个来源(CNN、BBC、Hacker News、TechCrunch)获取文章。
-
• 提取标题、正文、时间戳、来源和标签。
-
-
2. 预处理与嵌入
-
• 清理文本,将长文章切分为易于消化的段落。
-
• 通过Langchain的LLM兼容模型为每块生成embeddings。
-
• 在FAISS DB中索引所有块,附带元数据(来源、类别、日期)。
-
-
3. 用户画像匹配
-
• 存储用户偏好(主题、语气、长度、偏好来源)。
-
• 将偏好转化为embedding查询。
-
• FAISS搜索与用户最相关的文章。
-
-
4. AI摘要
-
• Langchain负责:
-
• 检索最相关的文章块
-
• 总结成简洁、个性化的摘要
-
• 可选:根据用户语气(正式、轻松、幽默)重写摘要
-
-
-
5. 输出体验
-
• 打造简洁的用户界面,展示:
-
• 个性化新闻流
-
• 来源链接
-
• 摘要+关键点
-
• “阅读更多”、“隐藏来源”或“更改偏好”的选项
-
-
现实世界的应用
-
• 个性化新闻阅读器(替代Flipboard或Feedly)
-
• 面向开发者的科技新闻聚合器
-
• 为高管或忙碌专业人士提供摘要简讯
-
• 金融分析师的市场更新摘要
升级点子
-
• 为每篇文章添加情感分析。
-
• 让用户选择每日电子邮件摘要。
-
• 集成Twitter/X趋势或Reddit帖子。
-
• 使用TTS(文本转语音)加入语音播报功能。
🤖 SupportGenie
AI驱动的语境感知客服机器人
打造一个智能聊天机器人,作为客户支持的第一道防线,能即时回答基于历史工单数据、FAQ、手册和产品文档的查询,提供自然、准确、语境相关的回复,最大限度减少人工支持的负担。
工具与技术栈
-
• FAISS:在历史工单/文档中进行快速相似度搜索
-
• Langchain:协调LLM(查询嵌入+响应逻辑)
-
• LLM后端:OpenAI GPT、Claude、LLaMA 3(通过Langchain)
-
• 聊天界面:Streamlit / React配合WebSocket或聊天API
-
• 数据源:CSV、工单导出、知识库(例如Zendesk、Intercom)
设计步骤
-
1. 数据收集与向量化
-
• 收集历史工单、聊天记录和FAQ。
-
• 按问题/主题清理并切分文本。
-
• 使用Langchain的封装(OpenAI、HuggingFace等)生成embeddings。
-
• 在FAISS中索引,附带元数据(例如“物流”、“账单”等标签)。
-
-
2. 实时聊天工作流
-
• 用户提问:“我的订单为什么延迟了?”
-
• Langchain:
-
• 将查询嵌入为向量 → 在FAISS中搜索
-
• 拉取前N个相关工单响应或知识库条目
-
-
• LLM(通过Langchain)接收上下文,返回:
-
• 直接、自然的回答
-
• 可选的后续建议(链接、行动、升级触发)
-
-
-
3. 聊天增强
-
• 增加记忆功能,让机器人在会话中记住之前的问题
-
• 将复杂问题路由给人工客服,并附上上下文摘要
-
• 跟踪未回答的问题,改进训练数据
-
现实世界的应用
-
• 电子商务:处理订单、退货、物流常见问题
-
• SaaS平台:即时帮助用户完成注册、账单或功能问题
-
• 技术支持:根据日志和历史工单推荐故障排除步骤
-
• 金融科技与保险:自动化处理高频、重复性查询
升级点子
-
• 情感分析,优先处理需升级的问题
-
• 分析仪表板,展示查询类型和响应质量
-
• 多语言支持,结合翻译层+Langchain
-
• 语音集成,支持语音激活的客服
👨💼 AI Recruitr
使用FAISS + Langchain的智能简历匹配器
打造一个AI系统,帮助招聘人员通过语义分析简历,匹配职位描述——不仅仅是关键词过滤,而是通过FAISS和Langchain实现真正的语言理解。
工具与技术栈
-
• FAISS DB:快速、近似最近邻简历检索
-
• Langchain:处理嵌入管道和语义匹配解释
-
• LLM Embeddings:OpenAI、Cohere、HuggingFace transformers等
-
• PDFMiner / PyMuPDF / docx2txt:提取简历文本
-
• Streamlit或Flask + React:简便的招聘者友好界面
-
• PostgreSQL / Firebase(可选):存储职位和用户档案
设计步骤
-
1. 简历摄入与处理
-
• 通过API上传或获取简历。
-
• 使用简历解析库或NLP工具解析文本。
-
• 将内容分为关键部分(例如经验、技能、教育)。
-
• 使用Langchain封装生成每个简历块的embeddings。
-
-
2. 职位描述嵌入
-
• 接受职位描述输入(手动输入或上传)。
-
• 预处理并使用与简历相同的模型转化为embedding向量。
-
-
3. 语义匹配与排名
-
• 使用FAISS比较职位向量与所有简历向量。
-
• 根据cosine similarity返回前N份简历。
-
• Langchain为每位候选人生成匹配原因(例如:“匹配React、SaaS 5年以上经验、Python专长”)。
-
-
4. 用户界面与输出
-
• 仪表板展示:
-
• 最佳匹配候选人列表
-
• 匹配分数与摘要
-
• 完整简历链接
-
• 匹配相关性解释
-
• 按经验年限、技术栈、地点等过滤
-
-
现实世界的应用
-
• 人才招聘平台(LinkedIn、Lever、Greenhouse)
-
• AI驱动的招聘机构
-
• 企业HR部门,自动化预筛选
-
• 初创公司创始人及招聘经理的内部工具
升级点子
-
• 集成LinkedIn API,实时抓取候选人信息。
-
• 加入偏见检查器,标记歧视性语言。
-
• 允许求职者反向匹配简历与实时职位列表。
-
• 添加招聘者反馈循环,优化模型准确性。
🌍 PolyLingua AI
语境感知的多语言翻译系统
打造一个智能多语言翻译引擎,不仅逐字翻译,还能理解输入文本的语义上下文。通过FAISS存储已翻译片段,Langchain协调语境驱动的LLM翻译,提供更智能、类人的多语言响应。
工具与技术
-
• FAISS:对已翻译句子的embeddings进行语义搜索
-
• Langchain:管理工作流、工具、prompt设计、LLM协调
-
• LLMs:GPT、Mistral或Gemini,用于多语言理解和生成
-
• FastText或spaCy:语言检测(封装在Langchain中)
-
• Streamlit / Flask / React:用户友好的翻译界面
系统设计步骤
-
1. 多语言输入检测与预处理
-
• 使用FastText或Langchain的工具集成检测用户输入语言。
-
• 清理并分词输入,保留关键短语和结构。
-
-
2. 嵌入与索引翻译
-
• 维护一个多语言已翻译句子或段落的语料库。
-
• 使用多语言embeddings(例如LaBSE、MPNet)为每个翻译生成嵌入。
-
• 在FAISS中存储embeddings,附带元数据(源语言、目标语言、领域上下文)。
-
-
3. FAISS上下文检索
-
• 嵌入输入查询。
-
• 使用FAISS查找语义上最相似的已翻译短语或句子。
-
• 帮助对齐语气、习语和现有知识的上下文。
-
-
4. Langchain翻译管道
-
• 将检索结果输入Langchain工作流。
-
• 为LLM构建prompt模板:
-
• 包含原始句子
-
• 添加FAISS检索的上下文
-
• 请求流畅、语境感知的翻译
-
-
• LLM返回具有细腻理解的翻译。
-
-
5. 输出与优化
-
• 显示翻译结果。
-
• 允许在字面翻译和语境翻译之间切换。
-
• 可选:反馈循环,重新训练或强化偏好的翻译。
-
现实世界的应用
-
• 本地化平台:准确、符合文化的翻译。
-
• 全球客户服务:实时多语言支持机器人。
-
• 社交平台:自动翻译帖子或消息,保留情感。
-
• 教育与出版:跨语言课程材料翻译。
升级点子
-
• 添加品牌特定语言的自定义术语表。
-
• 启用领域特定翻译模式(法律、医疗、日常)。
-
• 根据用户历史偏好提供实时翻译建议。
🧠 GraphIQ
基于知识图谱的智能问答系统
打造一个智能问答系统,针对特定领域(例如医疗、法律、金融)利用结构化的Knowledge Graph (KG),通过FAISS进行语义搜索检索关键关系,再用Langchain + LLM推理图谱,回答用户问题,提供深度语境感知。
技术与工具
-
• Knowledge Graph:Neo4j
-
• Embeddings:OpenAI、Hugging Face、Cohere
-
• FAISS:对图谱元素(三元组或节点embeddings)进行向量索引
-
• Langchain:协调查询 → 检索 → LLM响应
-
• LLM:GPT-4、Claude、Mistral(通过Langchain集成)
-
• 前端(可选):Streamlit、Flask + D3.js,用于图谱可视化
系统设计步骤
-
1. 构建知识图谱
-
• 收集领域内的结构化/非结构化数据(例如医学论文、法律条文)。
-
• 使用NLP(例如Spacy、OpenIE)提取实体和关系。
-
• 以三元组形式表示事实:
-
• 示例:(“布洛芬”,“治疗”,“炎症”)
-
-
• 存储到图数据库或导出三元组进行嵌入。
-
-
2. 嵌入与FAISS索引
-
• 为以下内容创建embeddings:
-
• 单个三元组
-
• 实体及其关系
-
-
• 在FAISS中索引,以便快速相似度搜索。
-
-
3. 语义搜索与检索
-
• 用户提问:“哪些药物能减少炎症?”
-
• Langchain将问题转为embedding。
-
• FAISS返回最接近的匹配三元组/实体。
-
-
4. 推理与答案生成
-
• Langchain从匹配事实构建结构化上下文prompt。
-
• LLM生成连贯、领域相关的答案。
-
• 可选:通过图谱可视化展示支持的三元组。
-
-
5. (可选)图谱界面
-
• 使用D3.js或Neo4j Bloom交互式渲染部分知识图谱。
-
• 让用户探索实体、放大或跟踪关系路径。
-
现实世界的应用
-
• 医疗:疾病-药物关系、治疗指导、研究问答。
-
• 金融:公司关系、风险分析、投资依据。
-
• 教育:基于概念的辅导,链接相关主题。
升级点子
-
• 实现交互式问答,支持后续问题,借助Langchain的memory。
-
• 根据检索图谱的密度和相关性添加置信度评分。
-
• 启用答案生成路径的可视化追踪。
🧠 DevFinder
语义AI代码搜索引擎
打造一个AI驱动的工具,让开发者基于意图或功能搜索相关代码片段,而不仅仅是关键词匹配。引擎能理解开发者需求,返回语义相关的代码,并提供建议、重构或解释——由FAISS和Langchain驱动。
工具与技术
-
• FAISS:索引和搜索代码片段embeddings
-
• Langchain:串联用户查询、上下文注入和LLM交互
-
• OpenAI (Codex/GPT-4)、Claude或Code Llama:用于编码任务和解释
-
• VS Code扩展 / Web界面(React/Next.js):类IDE前端
-
• GitHub API或手动上传:获取真实仓库代码
设计步骤
-
1. 代码片段收集
-
• 从以下来源获取代码片段:
-
• GitHub仓库
-
• 个人项目
-
• Stack Overflow数据
-
-
• 按功能、类或文件块切分。
-
-
2. 嵌入与索引
-
• 使用代码感知的embedding模型(例如OpenAI的text-embedding-ada-002或CodeBERT)将每个代码片段转为向量。
-
• 在FAISS中存储embeddings,附带元数据(文件名、语言、标签)。
-
-
3. 语义搜索引擎
-
• 用户输入:
-
• “如何在JavaScript中实现debounce函数?”
-
-
• Langchain:
-
• 将查询转为向量。
-
• 在FAISS中搜索最匹配的代码片段。
-
• 将结果注入结构化的LLM prompt。
-
-
-
4. LLM驱动的助手
-
• Langchain支持:
-
• 解释检索到的代码。
-
• 将代码重写为其他语言(例如Python → Go)。
-
• 建议优化或最佳实践。
-
• 根据prompt继续完成部分代码。
-
-
-
5. 开发者友好的界面
-
• Web应用或IDE扩展展示:
-
• 代码结果预览
-
• LLM的内联解释
-
• “复制代码”和“进一步解释”选项
-
• 语言切换或代码风格切换
-
-
现实世界的应用
-
• IDE助手:代码内建议和补全。
-
• 知识管理:从大型公司仓库中复用代码
-
• 开发者门户:查找可重用模块的内部工具
-
• 开源帮助台:跨开源仓库搜索示例
升级点子
-
• 语言翻译:用Python编写 → 获取Rust结果。
-
• 自动补全API构建器:用户描述端点 → 获取骨架代码。
-
• 代码库问答:“认证中间件定义在哪里?” → 即时结果。
-
• 文档链接:自动将检索到的代码连接到相关API/文档。
🍿 CineGenie
AI驱动的电影与电视剧推荐器
打造一个推荐引擎,不仅向用户抛出标题,而是深入理解用户偏好,通过AI基于用户品味、心情或历史交互,查找并解释个性化的电影或节目推荐。
设计步骤
-
1. 数据集设置与嵌入
-
• 收集电影元数据:剧情摘要、类型、关键词、用户评论。
-
• 必要时清理和切分(例如分离评论和剧情)。
-
• 使用Langchain + embedding模型为每个电影条目生成语义embeddings。
-
• 在FAISS DB中存储,附带电影ID。
-
-
2. 用户偏好输入
-
• 收集:
-
• 喜欢/不喜欢
-
• 喜欢的演员/导演
-
• 类型或主题
-
• 评论片段(“我爱《星际穿越》的情感弧线”)
-
-
• Langchain将这些输入串联,形成用户品味画像embedding。
-
-
3. 语义搜索
-
• 使用FAISS查找与用户偏好向量最接近的电影描述和主题。
-
• 返回前N个语义最相似的结果。
-
-
4. 个性化推荐层
-
• Langchain利用检索到的电影和用户画像:
-
• 以自然语言生成推荐。
-
• 解释每个推荐的理由(例如:“你喜欢《星际穿越》这样的情感科幻剧,所以《降临》是你的下一部必看之作。”)
-
-
现实世界的应用
-
• 流媒体平台,如Netflix、Hulu、Prime Video
-
• 基于内容的智能推荐引擎
-
• 在聊天平台上推荐媒体的AI助手
-
• 个性化游戏或动漫推荐引擎
总结
用RAG和Langchain打造AI职业未来
随着AI领域的快速发展,FAISS和Langchain等工具正成为构建智能、响应迅速、可扩展应用的关键。它们一起赋予开发者创建不仅能高效检索信息,还能推理、对话和个性化体验的系统,借助前沿的large language models。
从语义搜索引擎到智能推荐系统,我们探索的项目不仅是学习练习,更是反映AI发展未来的现实应用。无论你是想进入这个领域还是提升技能,掌握FAISS和Langchain都能让你在2025年及未来获得招聘者和公司青睐的实用优势。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取