这8个2025年最火的RAG项目不可错过!

想象一下,你能打造一个AI驱动的系统,秒速搜索海量数据,像人类一样理解语境,还能对复杂问题给出精准又聪明的回答。听起来像魔法?

其实不然——这就是FAISS DB和Langchain,两种正在改变人工智能版图的前沿技术。

如今,数据量爆炸式增长,传统搜索方法已经跟不上信息的庞大体量和复杂性。

FAISS DB(Facebook AI Similarity Search)横空出世,彻底革新了数据搜索与检索的方式。FAISS是一个专为快速、基于相似度的搜索设计的强大库。不管是处理文本、图片还是embeddings,FAISS都能让AI模型在眨眼间找到相关信息。

再来看Langchain——一个简化构建Large Language Model (LLM)应用的框架。Langchain能让开发者把AI系统的多个组件“串联”起来,比如prompt engineering、memory和FAISS这样的工具,打造出更动态、语境感知的应用。

在这篇博客里,我们将介绍10个用FAISS DB和Langchain打造的超酷项目创意,展示真实世界的应用,不仅能提升你的AI技能,还能让你在求职市场中脱颖而出。

这些项目将为你提供2025年抢占高需求AI职位的实用知识。


🧠 SmartDoc Finder

AI驱动的语义文档搜索

打造一个智能文档搜索工具,用户可以用日常英语提问,系统不仅返回文档列表,还能直接从文档中提取并推理出答案——利用FAISS DB和Langchain的强大功能和灵活性。

工具与技术
  • • FAISS:存储和检索文档的embeddings

  • • Langchain:处理LLM prompts、memory和逻辑的串联

  • • OpenAI / LLaMA / Claude:作为LLM后端(通过Langchain)

  • • Streamlit或React:快速优雅的前端界面

设计步骤
  1. 1. 数据摄入与预处理

    • • 上传PDF、doc或爬取的文本。

    • • 将文档切分为小块(例如500-1000个token),以获得更精确的embedding。

    • • 用Langchain封装的embedding模型(OpenAI、Hugging Face等)生成每个块的embeddings。

    • • 将所有向量embeddings连同引用存储到FAISS DB中。

  2. 2. 语义搜索

    • • 用户输入自然语言查询(例如:“AI在物流中的好处是什么?”)

    • • Langchain将查询转化为embedding向量。

    • • FAISS搜索出语义上最相似的N个文档块。

  3. 3. 智能回答

    • • Langchain将检索到的文档块作为上下文传递给LLM。

    • • LLM会:总结内容、提取答案,或围绕文档展开对话。

  4. 4. 用户界面与交互

    • • 显示搜索结果,包括:

      • • 高亮的源文档块

      • • 直接答案

      • • “继续提问”或“查看更多”的选项。

现实世界的应用
  • • 大型企业的内部文档搜索

  • • 智能客户支持(从手册、FAQ中提取答案)

  • • 学术论文搜索引擎

  • • 个人知识管理系统(Second Brain)

升级点子
  • • 添加文档标签和过滤(例如按日期、主题)。

  • • 针对公司特定语言或术语进行训练。

  • • 加入反馈循环,优化搜索质量。


🧠 NewsGenie

你的个性化AI新闻助手

打造一个新闻聚合器,不只是展示头条,而是能理解用户关心的内容,提供简短的摘要,定制语气、主题,甚至阅读时间,借助FAISS进行检索,Langchain驱动的LLM提供智能摘要。

工具与技术
  • • Langchain:串联embeddings、摘要和动态prompts

  • • FAISS:存储新闻块的语义embeddings

  • • News APIs(如NewsAPI、SerpAPI、自定义爬虫):获取最新内容

  • • 自定义爬虫:Firecrawl

  • • Hugging Face / OpenAI模型:用于摘要生成

  • • 用户偏好数据库:Firebase、MongoDB或Supabase

  • • 前端:React或Streamlit,提供流畅的用户体验

设计步骤
  1. 1. 新闻收集

    • • 通过爬虫或API从多个来源(CNN、BBC、Hacker News、TechCrunch)获取文章。

    • • 提取标题、正文、时间戳、来源和标签。

  2. 2. 预处理与嵌入

    • • 清理文本,将长文章切分为易于消化的段落。

    • • 通过Langchain的LLM兼容模型为每块生成embeddings。

    • • 在FAISS DB中索引所有块,附带元数据(来源、类别、日期)。

  3. 3. 用户画像匹配

    • • 存储用户偏好(主题、语气、长度、偏好来源)。

    • • 将偏好转化为embedding查询。

    • • FAISS搜索与用户最相关的文章。

  4. 4. AI摘要

    • • Langchain负责:

      • • 检索最相关的文章块

      • • 总结成简洁、个性化的摘要

      • • 可选:根据用户语气(正式、轻松、幽默)重写摘要

  5. 5. 输出体验

    • • 打造简洁的用户界面,展示:

      • • 个性化新闻流

      • • 来源链接

      • • 摘要+关键点

      • • “阅读更多”、“隐藏来源”或“更改偏好”的选项

现实世界的应用
  • • 个性化新闻阅读器(替代Flipboard或Feedly)

  • • 面向开发者的科技新闻聚合器

  • • 为高管或忙碌专业人士提供摘要简讯

  • • 金融分析师的市场更新摘要

升级点子
  • • 为每篇文章添加情感分析。

  • • 让用户选择每日电子邮件摘要。

  • • 集成Twitter/X趋势或Reddit帖子。

  • • 使用TTS(文本转语音)加入语音播报功能。


🤖 SupportGenie

AI驱动的语境感知客服机器人

打造一个智能聊天机器人,作为客户支持的第一道防线,能即时回答基于历史工单数据、FAQ、手册和产品文档的查询,提供自然、准确、语境相关的回复,最大限度减少人工支持的负担。

工具与技术栈
  • • FAISS:在历史工单/文档中进行快速相似度搜索

  • • Langchain:协调LLM(查询嵌入+响应逻辑)

  • • LLM后端:OpenAI GPT、Claude、LLaMA 3(通过Langchain)

  • • 聊天界面:Streamlit / React配合WebSocket或聊天API

  • • 数据源:CSV、工单导出、知识库(例如Zendesk、Intercom)

设计步骤
  1. 1. 数据收集与向量化

    • • 收集历史工单、聊天记录和FAQ。

    • • 按问题/主题清理并切分文本。

    • • 使用Langchain的封装(OpenAI、HuggingFace等)生成embeddings。

    • • 在FAISS中索引,附带元数据(例如“物流”、“账单”等标签)。

  2. 2. 实时聊天工作流

    • • 用户提问:“我的订单为什么延迟了?”

    • • Langchain:

      • • 将查询嵌入为向量 → 在FAISS中搜索

      • • 拉取前N个相关工单响应或知识库条目

    • • LLM(通过Langchain)接收上下文,返回:

      • • 直接、自然的回答

      • • 可选的后续建议(链接、行动、升级触发)

  3. 3. 聊天增强

    • • 增加记忆功能,让机器人在会话中记住之前的问题

    • • 将复杂问题路由给人工客服,并附上上下文摘要

    • • 跟踪未回答的问题,改进训练数据

现实世界的应用
  • • 电子商务:处理订单、退货、物流常见问题

  • • SaaS平台:即时帮助用户完成注册、账单或功能问题

  • • 技术支持:根据日志和历史工单推荐故障排除步骤

  • • 金融科技与保险:自动化处理高频、重复性查询

升级点子
  • • 情感分析,优先处理需升级的问题

  • • 分析仪表板,展示查询类型和响应质量

  • • 多语言支持,结合翻译层+Langchain

  • • 语音集成,支持语音激活的客服


👨‍💼 AI Recruitr

使用FAISS + Langchain的智能简历匹配器

打造一个AI系统,帮助招聘人员通过语义分析简历,匹配职位描述——不仅仅是关键词过滤,而是通过FAISS和Langchain实现真正的语言理解。

工具与技术栈
  • • FAISS DB:快速、近似最近邻简历检索

  • • Langchain:处理嵌入管道和语义匹配解释

  • • LLM Embeddings:OpenAI、Cohere、HuggingFace transformers等

  • • PDFMiner / PyMuPDF / docx2txt:提取简历文本

  • • Streamlit或Flask + React:简便的招聘者友好界面

  • • PostgreSQL / Firebase(可选):存储职位和用户档案

设计步骤
  1. 1. 简历摄入与处理

    • • 通过API上传或获取简历。

    • • 使用简历解析库或NLP工具解析文本。

    • • 将内容分为关键部分(例如经验、技能、教育)。

    • • 使用Langchain封装生成每个简历块的embeddings。

  2. 2. 职位描述嵌入

    • • 接受职位描述输入(手动输入或上传)。

    • • 预处理并使用与简历相同的模型转化为embedding向量。

  3. 3. 语义匹配与排名

    • • 使用FAISS比较职位向量与所有简历向量。

    • • 根据cosine similarity返回前N份简历。

    • • Langchain为每位候选人生成匹配原因(例如:“匹配React、SaaS 5年以上经验、Python专长”)。

  4. 4. 用户界面与输出

    • • 仪表板展示:

      • • 最佳匹配候选人列表

      • • 匹配分数与摘要

      • • 完整简历链接

      • • 匹配相关性解释

      • • 按经验年限、技术栈、地点等过滤

现实世界的应用
  • • 人才招聘平台(LinkedIn、Lever、Greenhouse)

  • • AI驱动的招聘机构

  • • 企业HR部门,自动化预筛选

  • • 初创公司创始人及招聘经理的内部工具

升级点子
  • • 集成LinkedIn API,实时抓取候选人信息。

  • • 加入偏见检查器,标记歧视性语言。

  • • 允许求职者反向匹配简历与实时职位列表。

  • • 添加招聘者反馈循环,优化模型准确性。


🌍 PolyLingua AI

语境感知的多语言翻译系统

打造一个智能多语言翻译引擎,不仅逐字翻译,还能理解输入文本的语义上下文。通过FAISS存储已翻译片段,Langchain协调语境驱动的LLM翻译,提供更智能、类人的多语言响应。

工具与技术
  • • FAISS:对已翻译句子的embeddings进行语义搜索

  • • Langchain:管理工作流、工具、prompt设计、LLM协调

  • • LLMs:GPT、Mistral或Gemini,用于多语言理解和生成

  • • FastText或spaCy:语言检测(封装在Langchain中)

  • • Streamlit / Flask / React:用户友好的翻译界面

系统设计步骤
  1. 1. 多语言输入检测与预处理

    • • 使用FastText或Langchain的工具集成检测用户输入语言。

    • • 清理并分词输入,保留关键短语和结构。

  2. 2. 嵌入与索引翻译

    • • 维护一个多语言已翻译句子或段落的语料库。

    • • 使用多语言embeddings(例如LaBSE、MPNet)为每个翻译生成嵌入。

    • • 在FAISS中存储embeddings,附带元数据(源语言、目标语言、领域上下文)。

  3. 3. FAISS上下文检索

    • • 嵌入输入查询。

    • • 使用FAISS查找语义上最相似的已翻译短语或句子。

    • • 帮助对齐语气、习语和现有知识的上下文。

  4. 4. Langchain翻译管道

    • • 将检索结果输入Langchain工作流。

    • • 为LLM构建prompt模板:

      • • 包含原始句子

      • • 添加FAISS检索的上下文

      • • 请求流畅、语境感知的翻译

    • • LLM返回具有细腻理解的翻译。

  5. 5. 输出与优化

    • • 显示翻译结果。

    • • 允许在字面翻译和语境翻译之间切换。

    • • 可选:反馈循环,重新训练或强化偏好的翻译。

现实世界的应用
  • • 本地化平台:准确、符合文化的翻译。

  • • 全球客户服务:实时多语言支持机器人。

  • • 社交平台:自动翻译帖子或消息,保留情感。

  • • 教育与出版:跨语言课程材料翻译。

升级点子
  • • 添加品牌特定语言的自定义术语表。

  • • 启用领域特定翻译模式(法律、医疗、日常)。

  • • 根据用户历史偏好提供实时翻译建议。


🧠 GraphIQ

基于知识图谱的智能问答系统

打造一个智能问答系统,针对特定领域(例如医疗、法律、金融)利用结构化的Knowledge Graph (KG),通过FAISS进行语义搜索检索关键关系,再用Langchain + LLM推理图谱,回答用户问题,提供深度语境感知。

技术与工具
  • • Knowledge Graph:Neo4j

  • • Embeddings:OpenAI、Hugging Face、Cohere

  • • FAISS:对图谱元素(三元组或节点embeddings)进行向量索引

  • • Langchain:协调查询 → 检索 → LLM响应

  • • LLM:GPT-4、Claude、Mistral(通过Langchain集成)

  • • 前端(可选):Streamlit、Flask + D3.js,用于图谱可视化

系统设计步骤
  1. 1. 构建知识图谱

    • • 收集领域内的结构化/非结构化数据(例如医学论文、法律条文)。

    • • 使用NLP(例如Spacy、OpenIE)提取实体和关系。

    • • 以三元组形式表示事实:

      • • 示例:(“布洛芬”,“治疗”,“炎症”)

    • • 存储到图数据库或导出三元组进行嵌入。

  2. 2. 嵌入与FAISS索引

    • • 为以下内容创建embeddings:

      • • 单个三元组

      • • 实体及其关系

    • • 在FAISS中索引,以便快速相似度搜索。

  3. 3. 语义搜索与检索

    • • 用户提问:“哪些药物能减少炎症?”

    • • Langchain将问题转为embedding。

    • • FAISS返回最接近的匹配三元组/实体。

  4. 4. 推理与答案生成

    • • Langchain从匹配事实构建结构化上下文prompt。

    • • LLM生成连贯、领域相关的答案。

    • • 可选:通过图谱可视化展示支持的三元组。

  5. 5. (可选)图谱界面

    • • 使用D3.js或Neo4j Bloom交互式渲染部分知识图谱。

    • • 让用户探索实体、放大或跟踪关系路径。

现实世界的应用
  • • 医疗:疾病-药物关系、治疗指导、研究问答。

  • • 金融:公司关系、风险分析、投资依据。

  • • 教育:基于概念的辅导,链接相关主题。

升级点子
  • • 实现交互式问答,支持后续问题,借助Langchain的memory。

  • • 根据检索图谱的密度和相关性添加置信度评分。

  • • 启用答案生成路径的可视化追踪。


🧠 DevFinder

语义AI代码搜索引擎

打造一个AI驱动的工具,让开发者基于意图或功能搜索相关代码片段,而不仅仅是关键词匹配。引擎能理解开发者需求,返回语义相关的代码,并提供建议、重构或解释——由FAISS和Langchain驱动。

工具与技术
  • • FAISS:索引和搜索代码片段embeddings

  • • Langchain:串联用户查询、上下文注入和LLM交互

  • • OpenAI (Codex/GPT-4)、Claude或Code Llama:用于编码任务和解释

  • • VS Code扩展 / Web界面(React/Next.js):类IDE前端

  • • GitHub API或手动上传:获取真实仓库代码

设计步骤
  1. 1. 代码片段收集

    • • 从以下来源获取代码片段:

      • • GitHub仓库

      • • 个人项目

      • • Stack Overflow数据

    • • 按功能、类或文件块切分。

  2. 2. 嵌入与索引

    • • 使用代码感知的embedding模型(例如OpenAI的text-embedding-ada-002或CodeBERT)将每个代码片段转为向量。

    • • 在FAISS中存储embeddings,附带元数据(文件名、语言、标签)。

  3. 3. 语义搜索引擎

    • • 用户输入:

      • • “如何在JavaScript中实现debounce函数?”

    • • Langchain:

      • • 将查询转为向量。

      • • 在FAISS中搜索最匹配的代码片段。

      • • 将结果注入结构化的LLM prompt。

  4. 4. LLM驱动的助手

    • • Langchain支持:

      • • 解释检索到的代码。

      • • 将代码重写为其他语言(例如Python → Go)。

      • • 建议优化或最佳实践。

      • • 根据prompt继续完成部分代码。

  5. 5. 开发者友好的界面

    • • Web应用或IDE扩展展示:

      • • 代码结果预览

      • • LLM的内联解释

      • • “复制代码”和“进一步解释”选项

      • • 语言切换或代码风格切换

现实世界的应用
  • • IDE助手:代码内建议和补全。

  • • 知识管理:从大型公司仓库中复用代码

  • • 开发者门户:查找可重用模块的内部工具

  • • 开源帮助台:跨开源仓库搜索示例

升级点子
  • • 语言翻译:用Python编写 → 获取Rust结果。

  • • 自动补全API构建器:用户描述端点 → 获取骨架代码。

  • • 代码库问答:“认证中间件定义在哪里?” → 即时结果。

  • • 文档链接:自动将检索到的代码连接到相关API/文档。


🍿 CineGenie

AI驱动的电影与电视剧推荐器

打造一个推荐引擎,不仅向用户抛出标题,而是深入理解用户偏好,通过AI基于用户品味、心情或历史交互,查找并解释个性化的电影或节目推荐。

设计步骤
  1. 1. 数据集设置与嵌入

    • • 收集电影元数据:剧情摘要、类型、关键词、用户评论。

    • • 必要时清理和切分(例如分离评论和剧情)。

    • • 使用Langchain + embedding模型为每个电影条目生成语义embeddings。

    • • 在FAISS DB中存储,附带电影ID。

  2. 2. 用户偏好输入

    • • 收集:

      • • 喜欢/不喜欢

      • • 喜欢的演员/导演

      • • 类型或主题

      • • 评论片段(“我爱《星际穿越》的情感弧线”)

    • • Langchain将这些输入串联,形成用户品味画像embedding。

  3. 3. 语义搜索

    • • 使用FAISS查找与用户偏好向量最接近的电影描述和主题。

    • • 返回前N个语义最相似的结果。

  4. 4. 个性化推荐层

    • • Langchain利用检索到的电影和用户画像:

      • • 以自然语言生成推荐。

      • • 解释每个推荐的理由(例如:“你喜欢《星际穿越》这样的情感科幻剧,所以《降临》是你的下一部必看之作。”)

现实世界的应用
  • • 流媒体平台,如Netflix、Hulu、Prime Video

  • • 基于内容的智能推荐引擎

  • • 在聊天平台上推荐媒体的AI助手

  • • 个性化游戏或动漫推荐引擎


总结

用RAG和Langchain打造AI职业未来

随着AI领域的快速发展,FAISS和Langchain等工具正成为构建智能、响应迅速、可扩展应用的关键。它们一起赋予开发者创建不仅能高效检索信息,还能推理、对话和个性化体验的系统,借助前沿的large language models。

从语义搜索引擎到智能推荐系统,我们探索的项目不仅是学习练习,更是反映AI发展未来的现实应用。无论你是想进入这个领域还是提升技能,掌握FAISS和Langchain都能让你在2025年及未来获得招聘者和公司青睐的实用优势。

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值