云服务器 Flexus X 实例:RAG 开源项目 FastGPT 部署,玩转大模型

本篇文章主要通过 Flexus 云服务器 X 实例 部署 RAG 开源项目 FastGPT,通过 FastGPT 可以使用大模型生成用户需要的内容。 Flexus 云服务器 X 实例具有柔性算力,六倍性能,旗舰体验,覆盖高科技、零售、金融、游戏等行业大多数通用工作负载场景,完全可以支持 FastGPT 的部署、运行和使用,而且,Flexus 云服务器 X 实例 能够提供完备的产品能力,可以基于业务诉求灵活自定义拓扑组网,支持灵活自定义 vCPU 和内存配比,完全基于业务资源诉求选择合适规格,节省资源开销等优势,需要的小伙伴赶紧用起来吧!

一、FastGPT 简介****

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!

具有如下特性:

(1)专属 AI 客服:通过导入文档或已有问答对进行训练,让 AI 模型能根据你的文档以交互式对话方式回答问题;

(2)简单易用的可视化界面:FastGPT 采用直观的可视化界面设计,为各种应用场景提供了丰富实用的功能。通过简洁易懂的操作步骤,可以轻松完成 AI 客服的创建和训练流程;

(3)自动数据预处理:提供手动输入、直接分段、LLM 自动处理和 CSV 等多种数据导入途径,其中“直接分段”支持通过 PDF、WORD、Markdown 和 CSV 文档内容作为上下文。FastGPT 会自动对文本数据进行预处理、向量化和 QA 分割,节省手动训练时间,提升效能;

(4)工作流编排:基于 Flow 模块的工作流编排,可以帮助你设计更加复杂的问答流程。例如查询数据库、查询库存、预约实验室等;

(5)强大的 API 集成:FastGPT 对外的 API 接口对齐了 OpenAI 官方接口,可以直接接入现有的 GPT 应用,也可以轻松集成到企业微信、公众号、飞书等平台。

二、FastGPT 部署****

2.1 下载启动文件****

首先,创建一个目录方便存储部署的文件,执行如下命令创建目录。

root@flexusx-7305:~# mkdir fastgpt

进入 fastgpt 目录,下载 config.json 文件。

root@flexusx-7305:~# cd fastgpt

root@flexusx-7305:~/fastgpt# curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json

% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current   Dload  Upload   Total   Spent    Left  Speed

100  6637  100  6637    0     0  17283      0 --:--:-- --:--:-- --:--:-- 17283

root@flexusx-7305:~#

如上所示,下载成功。config.json 文件是用于配置 FastGPT,包括大模型、向量数据库、重排模型等,config.json 文件部分内容如下所示。

{

"feConfigs": {

"lafEnv": "https://laf.dev" // laf 环境。 https://laf.run (杭州阿里云) ,或者私有化的 laf 环境。如果使用 Laf openapi 功能,需要最新版的 laf 。

},

"systemEnv": {

"vectorMaxProcess": 15,

"qaMaxProcess": 15,

"pgHNSWEfSearch": 100 // 向量搜索参数。越大,搜索越精确,但是速度越慢。设置为 100,有 99%+精度。

},

"llmModels": [

{

"model": "gpt-4o-mini", // 模型名(对应 OneAPI 中渠道的模型名)

"name": "gpt-4o-mini", // 模型别名

"avatar": "/imgs/model/openai.svg", // 模型的 logo

"maxContext": 125000, // 最大上下文

"maxResponse": 16000, // 最大回复

"quoteMaxToken": 120000, // 最大引用内容

"maxTemperature": 1.2, // 最大温度

"charsPointsPrice": 0, // n 积分/1k token(商业版)

"censor": false, // 是否开启敏感校验(商业版)

"vision": true, // 是否支持图片输入

"datasetProcess": true, // 是否设置为知识库处理模型(QA),务必保证至少有一个为 true,否则知识库会报错

"usedInClassify": true, // 是否用于问题分类(务必保证至少有一个为 true)

"usedInExtractFields": true, // 是否用于内容提取(务必保证至少有一个为 true)

"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为 true)

"usedInQueryExtension": true, // 是否用于问题优化(务必保证至少有一个为 true)

"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。目前只有 gpt 支持)

"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为 false,则使用 functionCall,如果仍为 false,则使用提示词模式)

"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型

"customExtractPrompt": "", // 自定义内容提取提示词

"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词

"defaultConfig": {}, // 请求 API 时,挟带一些默认配置(比如 GLM4 的 top_p)

"fieldMap": {} // 字段映射(o1 模型需要把 max_tokens 映射为 max_completion_tokens)

},

{

"model": "gpt-4o",

"name": "gpt-4o",

"avatar": "/imgs/model/openai.svg",

"maxContext": 125000,

"maxResponse": 4000,

"quoteMaxToken": 120000,

### 构建或使用私有知识库 IT 解决方案 构建或使用私有知识库是一种利用现代人工智能技术和自然语言处理能力来增强企业内部信息管理的有效方法。以下是关于如何实现这一目标的具体说明: #### 私有知识库的核心概念 私有知识库通常通过结合大型语言模型(LLM)和检索增强生成(RAG, Retrieval-Augmented Generation)技术来提供高效的信息检索服务[^2]。其主要功能是从企业的专有文档、数据库或其他形式的知识源中提取有用信息,并以问答的形式呈现给用户。 #### 技术架构概述 为了成功搭建这样的系统,可以采用如下几个关键技术组件: 1. **知识嵌入** 将现有的知识资源转化为机器可读的向量表示形式。这一步骤可以通过预训练的语言模型完成,例如 Hugging Face 提供的各种开源模型[^1]。 2. **索引存储** 创建高效的搜索引擎或者向量数据库用于保存这些经过转换后的知识条目。Elasticsearch 和 Milvus 是两个常见的选择,在实际应用中有广泛的支持基础[^3]。 3. **查询解析与匹配** 当接收到用户的提问时,系统会先分析问题语义特征,再从已建立好的索引里找到最接近的回答候选集。 4. **动态生成回复** 基于筛选出来的上下文材料以及原始输入请求,调用强大的 LLM 来合成最终答案输出给终端使用者。 #### 实际操作指南 具体到实施层面,这里给出一些实用建议帮助开发者快速入门: - 利用云计算平台提供的虚拟机实例作为运行环境,比如华为云上的 Flexus 产品线提供了良好的硬件支持和服务保障; - 安装必要的软件栈,包括但不限于 Python 运行时环境及其科学计算库 NumPy/Pandas/TensorFlow 等; - 下载合适的预训练模型权重文件并加载至项目目录下以便后续调用; - 编写脚本自动化执行整个流程中的各项任务——从数据清理准备一直到前端界面展示逻辑设计; ```bash # 示例命令:安装所需依赖项 pip install numpy pandas tensorflow transformers faiss-cpu elasticsearch ``` #### 注意事项 尽管上述描述看起来相对简单明了,但在实践中仍需注意以下几点挑战因素可能影响整体效果表现: - 数据质量控制至关重要,脏乱差的数据可能导致错误结论甚至误导决策者; - 性能优化始终是个难题,尤其是在面对海量级规模的数据集合时更显得尤为突出; - 法律法规遵从性不可忽视,特别是在涉及敏感个人信息保护方面更要小心谨慎行事。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值