环形链表-I
题目描述:给定一个链表,判断链表中是否有环。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。链接:https://leetcode-cn.com/problems/linked-list-cycle/
这个问题大家在数据结构中是很常见的,这个问题说简单也简单,可是想不通的时候还是有点难度的,领扣对这道题的描述有以下几种情况
我们在做题的时候要首先考虑如上的特殊情况,防止出现空指针异常。
这道题目我选择用"快慢指针"解答,定义两个节点引用—一快一慢,都从第一个节点开始,快指针每次走两步,慢指针走一步,快慢交替遍历。如果相遇则证明该链表带环,遍历结束仍无法相遇则不带环。题目链接:https://leetcode-cn.com/problems/linked-list-cycle-ii/
领扣给的链表节点定义方式:
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
方法代码
public boolean hasCycle(ListNode head) {
//首先判断头节点是否为空,为空直接返回false
if(head==null)
return false;
//运用快慢指针遍历链表
ListNode slow=head;
ListNode fast=head;
//此处注意判断fast.next是否为空,防止对其解引用出现空指针异常
while(fast!=null && fast.next!=null){
fast=fast.next.next;
slow=slow.next;
//链表带环直接返回
if(fast==slow)
return true;
}
//此时仍未遇到则不带环
return false;
}
环形链表-II
在上一个题目我们可以成功的判断链表是否带环,我们现在想知道这个环的具体位置,我们要求得链表入环的第一个节点
题目描述:给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
这个题目的情况有以下几种:
- 情况1
- 情况2
- 情况3
链表节点的定义和上面的一样,我们现在需要来考虑如何才能找到链表的环内第一个节点,这道题仍然需要“快慢指针”来帮忙,先来看一下下面的图,我们假设相遇点,假设链表的节点长度为N,从第一个节点到环入口的路程为X,从环的入口点到相遇点的距离为Y
快指针每次走两步,慢指针每次走一步,如果相遇则快指针所走路程为慢指针的二倍,慢指针在相遇时所走路程为X+Y,快指针在相遇时所走路程为N+Y,我们就可以很容易的得到N+Y=2(X+Y),展开后得到:N=2X+Y,则从相遇点到最后一个节点(next即将成环)的距离也为X。此时这个题目就已经解出来了,首先用快慢指针和第一题一样先判断是否能够相遇,若可以则将慢指针重新放回第一个节点,快慢指针依次前进(此时每次都走一步),再次相遇的地方即为环的入口点。
public ListNode detectCycle(ListNode head) {
if(head==null)
return null;
ListNode slow=head;
ListNode fast=head;
//标识相遇节点
ListNode met=null;
//判断链表是否带环并记录相遇点位置
while(fast!=null && fast.next!=null){
fast=fast.next.next;
slow=slow.next;
if(fast==slow){
met=fast;
break;
}
}
//链表带环
if(met!=null){
//慢指针再次从头开始
slow=head;
//再次相遇即为环的入口点
while(fast!=slow){
fast=fast.next;
slow=slow.next;
}
return fast;
}
//链表不带环
else
return null;
}