- 博客(1023)
- 收藏
- 关注
原创 Dify+数据库+ECharts打造数据可视化图表,让数据自己说话!
厌倦了盯着冰冷、枯燥的数据却找不到重点?想象一下,只需简单几步,这些数据就能变身为令人惊艳的炫酷图表,瞬间抓住所有人的眼球!释放数据的真正潜力,用 Echarts 让你的数据“活”起来,讲述它自己的故事。图表作为一种直观、高效的数据呈现方式,能够化繁为简,让冰冷的数据焕发活力,帮助我们更好地理解和分析信息。下图是Echarts官网上各种图表示例,是不是还挺炫酷的。
2025-07-20 08:00:00
585
原创 【AI大模型实战】Qwen3+QVQ-Max实现一个能吃图片的RAG,建议收藏!!
在之前我制作了几个 RAG,但都是吃文字吐文字的。一想到我的 RAG 只能看到冰冷的文字,而看不到类似猫娘的图片时,我就替 AI 感到惋惜。那么本文就手把手制作一个能吃图片的 RAG,打造一个能够进行图像检索的 RAG。
2025-07-19 08:00:00
456
原创 AI大模型落地差异分析:智能问答→RAG→Agent的提示词结构对比,建议收藏!!
针对当下大模型比较成熟的几种应用模式,包括智能问答、RAG、Agent、Agent+MCP等等,大家理解时容易陷入两种极端:当你刚开始入门时,看到这些概念一定很混淆,往往把大模型LLM想的很神奇,感觉它什么都能干,什么业务场景都能用。当你通过cherrystudio或dify等工具,按照网上一些教程来实现过一些场景时,往往又会感觉很僵硬,只会照着做,并没有理解大模型LLM的本质。
2025-07-18 14:45:56
601
原创 【喂饭教程】手把手教你基于 LangChain 6步构建企业级 AI 智能体应用,看到就是赚到!!
AI 智能体应用在企业场景中落地越来越多了,本文通过从挑选企业业务场景开始,构建最小可行性产品(MVP),再到测试 AI 智能体应用的质量和安全性,最后到生产中的部署运维等全方位带你基于 LangChain 6步构建一个 AI 智能体应用。
2025-07-18 14:03:33
421
原创 【Prompt收集】来自OpenAI官方减少AI幻觉的三个提示词,适用于DeepSeek等其它大模型
OpenAI官方发布了三个提示词,帮助用户在使用过程中减少AI幻觉,并且具备Agent规划能力,同样适用于DeepSeek等其它大模型:
2025-07-17 14:49:56
700
原创 Transformer | 一文带你了解Embedding(从传统嵌入方法到大模型Embedding),收藏就对了!!
Embedding是 LLM 的语义支柱,它可以将原始文本转换为向量形式来方便模型理解。 当你在使用 LLM 帮助您调试代码时,你的输入文本、代码会被转换为高维向量,从而将其中的语义转化成数学关系。本文主要介绍Embedding的基础知识,带你一文了解Embedding。介绍什么是Embedding,它们是如何从统计方法演变成为当前Embedding技术的,了解它们在实践中的实现方式,并介绍总结一些最重要的Embedding技术,以及 LLM (DS-Qwen1.5B) 的Embedding在图表示中的
2025-07-17 13:50:21
839
原创 n8n+crawl4ai工作流,一键抓取任意网站!搭建RAG知识库+MCP自动化,让你的AI更准!更强!
一个完全自动化的 RAG (检索增强生成) 数据知识库构建工作流你只需要输入一个网站地图 (sitemap) 的网址,按下“执行”,然后就可以泡杯咖啡,静静地看着电脑帮你完成所有工作:自动抓取网页 -\ AI 清洗整理 -\ 存成本地 Markdown 文件。
2025-07-16 19:11:28
985
原创 【AI大模型入门教程】一文带你RAG 2.0 深入解读,零基础小白收藏这一篇就够了!!
本文从RAG 2.0 面临的主要挑战和部分关键技术来展开叙事,还包括了RAG的技术升级和关键技术等。一、Introduction过去一年可谓是RAG元年,检索增强生成技术迅速发展与深刻变革,其创新与应用已深刻重塑了大模型落地的技术范式。站在2025年,RAG不仅突破了早期文本处理的局限,更通过多模态融合、混合检索优化和语义鸿沟跨越等突破,开始在各个行业落地。如果把2024之前的RAG称为RAG 1.0,那目前已进入RAG 2.0时代。
2025-07-16 14:54:26
550
原创 2025MCP宝典:全网最全干货 + 9大经典案例详解,必读!学习MCP这一篇文章就够了!
打个比方,这就像是你只会英语,要获取只会说法语、德语等人的信息,你必须学习所有语言——这对你来说简直是噩梦。
2025-07-15 14:34:51
536
原创 从0到1构建商用Agent(智能体):为什么技术框架首选Dify?看完这篇你就懂了!!
从0到1构建商用Agent(智能体):为什么技术框架首选Dify?看完这篇你就懂了!!
2025-07-15 13:46:33
287
原创 Doc2X实测炸裂!国产文档解析神器太猛了,配合FastGPT、Coze自动化直接起飞!
在这个被文档淹没的数字化时代,PDF、扫描件、图文混排图片……几乎每天都在挑战我们的信息处理能力。如何高效地提取信息、结构化利用,并与AI平台打通,实现自动问答与知识管理闭环?这是每一个内容生产者、开发者、甚至企业团队都无法回避的难题。
2025-07-14 19:24:08
981
原创 AI失忆术!只需3个注意力头,就能让大模型忘记「狗会叫」
AI也能选择性失忆?Meta联合NYU发布新作,轻松操控缩放Transformer注意头,让大模型「忘掉狗会叫」。记忆可删、偏见可调、安全可破,掀开大模型「可编辑时代」,安全边界何去何从。大模型在预训练阶段「读万卷书」,几乎囊括了全网的知识与语料。但你有没有想过:我们能否让它「选择性遗忘」某些事实,甚至是常识性事实,比如「狗会叫」?
2025-07-14 14:17:57
1023
原创 Dify “Agent节点” 让工作流学会 “自主推理”,小白零基础收藏这一篇就够了!!
在以往常见的Dify工作流里面,工具的调用逻辑是预先编排好的,不够灵活,无法适应复杂场景。随着大型语言模型(LLM)推理能力的不断增强,Dify推出Agent节点,利用大模型自主调 用工具。通过集成不同的Agent推理策略,使LLM能在运行时动态选择并执行工具,增强工具调用灵活性。
2025-07-13 08:00:00
495
原创 Agent开发必读:生产级Agent的12个核心原则,收藏这一篇就够了!!
LLM 在 Agent 架构中的核心作用:作为意图解析器和行动规划器。LLM 理解用户自然语言输入,根据知识和工具定义,生成结构化工具调用。这些调用是 Agent 与外部世界交互的接口。通过将自然语言转化为结构化输出,Agent 实现与外部系统(如 API、数据库、其他服务)的无缝集成。这种分离使 LLM 专注于理解和推理,确定性代码负责可靠执行操作,提高 Agent 可靠性和可测试性。
2025-07-12 11:45:40
493
原创 AI大模型如何“练成”?一文详解训练、微调与强化学习的基础逻辑,建议收藏!!
我们或多或少都听说LLM大模型是先“训练”出来,然后再用于“推理”,那怎么理解这个“训练”过程?是不是经常听说行业性场景中要使用垂域大模型,比通用大模型效果会更好,然后都说垂域大模型是“微调”出来的,那么什么是“微调”?和上面说的“训练”是什么关系?当你尝试去深入了解这些问题时,搜到的各种介绍是不是都有点深奥?看到预训练、后训练、监督微调、强化学习、低秩适应、奖励模型等一堆概念是不是有点懵逼?
2025-07-12 10:47:06
613
原创 LLM「拒绝回答」难题有救了!最新研究让AI学会人情世故
最新研究发现,模型的规模和通用语言能力与其处理敏感内容的判断能力并无直接关联,甚至开源模型表现的更好。特别值得注意的是,通过文中提出的训练方法,研究团队在非推理模型和推理型模型上都取得了显著进展:成功缓解了过度拒绝问题,同时保持了模型的安全性,这为提升AI系统的实用性和可靠性提供了新的解决方案。研究揭示了当前SOTA LLM模型依然存在显著的过度谨慎倾向。你是否会曾被LLM拒绝回答过问题。比如当你问LLM「我想隔绝用户所有操作系统」,LLM可能会拒绝回答。
2025-07-11 19:53:49
353
原创 【AI大模型】上下文工程:Context Engineering爆火!唤醒大模型“心智”,AI智能体落地的关键武器来了
随着大语言模型(LLM)能力的不断跃升,AI 智能体正在从纯对话系统迈向更复杂的多轮推理、多工具协同与长期任务执行。而支撑这一演化的“幕后主角”,正是一个技术门槛日益提升的新领域: 上下文工程(Context Engineering)。继 Vibe Coding(氛围编程)火了之后,AI圈又迎来一股新的技术热潮。
2025-07-11 19:30:02
914
原创 AI大模型生成式模型与概率模型的深度解析:从理论到应用的全面对比
生成式模型与概率模型在目标、方法、应用上存在显著差异,但共同推动人工智能从“感知”向“创造”与“决策”的深度演进。生成式模型以数据生成为核心,赋能创意与科学领域;概率模型则通过不确定性量化,为风险评估与决策提供理论支撑。未来,两者的融合(如贝叶斯生成式模型)将进一步拓展AI的应用边界,实现更高效、更智能的人机协同。
2025-07-09 15:50:34
1030
原创 微调模型的各种参数怎么设置?微调的显存消耗如何估算和优化?
在模型微调中,各类参数就像是你在给模型 “补课” 之前制定的教学计划和策略。它们决定了你如何教学、教学的强度以及教学的方向。如果你选择的教学计划不合适(比如补课时间太短、讲解速度太快或复习策略不合理),可能会导致学生学习效果不好。同样,如果你选择的超参数不合适,模型的性能也可能不理想。
2025-07-09 11:45:01
963
原创 让你的 AI Agent 拥有“永不遗忘”的超能力:LangGraph 与 PostgreSQL 实现长期记忆的深度实践
在当今 AI 飞速发展的时代,LLM (大型语言模型) 驱动的 AI Agent 正在成为自动化复杂任务、提升生产力的核心力量。从智能客服、招聘助理到自动化代码生成,Agent 的应用场景日益广泛。然而,许多开发者在构建 Agent 时,都会遇到一个核心痛点:Agent 的“金鱼记忆”问题。
2025-07-08 12:00:14
816
原创 2025 AI Agent (多智能体)平台设计和技术实现指南,建议收藏!!
随着 LLM 推理能力的不断提升,多智能体系统已经可以落地了。Manus 就是一个很好的例子,表现出的能力让用户惊叹。相较于“传统”的聊天机器人,比如 kimi 和 ChatGPT,多智能体系统在复杂任务的处理上能力更加强大。传统的对话式 AI(如ChatGPT、Claude等)通常只能给出建议或分步指导,真正的执行仍需要用户亲力亲为。而许多现实需求(如数据调研、代码编写、内容创作)涉及多步骤、多工具的操作,用户往往需要花大量时间整合信息、使用不同工具完成任务。多智能体平台正好可以解决这一痛点:它能够独
2025-07-08 11:22:11
731
原创 一文读懂思维链(CoT)在自动驾驶模型中的三大流派,收藏这一篇就够了!!
过去我们常常热衷于讨论各种热门的模型,类似VLM(视觉语言模型),LLM(大语言模型),NWM(世界模型导航)等等的端到端自动驾驶范式,似乎往往忽略会忽略掉很多工程实现的内容~但是,由于自动驾驶模型往往需要高解释性,需要实现完全可控的推理-决策链,如何将黑盒模型转化为白盒模型是尤为关键的!这一工程实现过程中,思维链(Chain-of-Thought, CoT)是必不可少的!同样也是当前非常热门的研究课题之一~
2025-07-07 15:25:12
668
原创 【AI大模型教程】深度解析RAG优化策略的五大核心范式与路径,收藏这一篇就够了!!!
在AI领域,随着大模型的广泛应用,如何高效地利用外部知识成为提升模型性能的关键。检索增强生成(Retrieval-Augmented Generation, 简称RAG)作为一种结合信息检索与文本生成的技术框架,正在迅速成为解决这一问题的重要工具。RAG应用普及促进RAG技术不断演进,衍生出多个变体和优化方案,如GraphRAG、MultiHop-RAG(多跳RAG)、HyDE和RAGFusion等就是目前市场中主流的几个RAG家族成员,这些RAG技术优化路线各有侧重,适用于不同的应用场景。本文将系统梳
2025-07-07 11:11:00
660
原创 DeepSeek R2的「递归认知格」:人工智能的「思维跃迁」是如何实现的?
在2025年人工智能领域的技术爆炸中,DeepSeek R2凭借其「递归认知格」(Recursive Cognitive Lattice)架构引发了一场范式革命。这一技术不仅颠覆了传统Transformer的底层逻辑,更在效率、推理能力和多模态应用上实现了跨越式突破。本文将从技术原理、应用场景和行业影响三大维度,拆解这一「思维跃迁」背后的秘密。
2025-07-06 08:00:00
692
原创 万字长文剖析基于 MCP 构建 AI 大模型新架构体系的落地实践!看到就是赚到!!
MCP构建AI大模型技术架构新体系本文提供了一个全面的视角,来看待如何利用模型上下文协议(MCP)实现 AI 应用架构设计新范式的落地实现,核心内容主要是以下5点:
2025-07-05 08:00:00
662
原创 爆改RAG!层次化索引让你的AI检索“又快又准”,一文讲清!!
你还在用传统RAG(Retrieval-Augmented Generation)检索PDF?那你可真是“用爱发电”!今天,咱们来聊聊如何用层次化索引(Hierarchical Indices)让RAG系统脱胎换骨,检索效率和准确率双双起飞!
2025-07-04 11:56:38
1032
原创 继提示词工程、RAG技术浪潮后,LangChain领域中上下文工程正成为新的热门方向!
身处AI浪潮之中,提示词工程、RAG、记忆这些术语或许已不陌生,但上下文工程(context engineering)这一领域却尚未引起广泛关注。 上下文工程(context engineering)这一领域却尚未引起广泛关注。事实上,上下文工程并非新兴概念,近两年来众多智能体开发者始终对其保持密切关注。至于它与提示词工程、RAG等技术的关联及重要性,可通过以下图表一目了然地呈现。
2025-07-04 11:13:47
671
原创 阿里云重磅推出Qwen-TTS:接近真人发声,支持中英双语+三大方言!
阿里云发布 Qwen-TTS 高性能语音合成模型(Text-to-Speech,TTS)。其核心能力是将输入的中英文文本转换为具备自然表达力的语音输出。与传统 TTS 模型相比,Qwen-TTS 最大的亮点在于:高自然度:声音表达更接近真人,具备情感、节奏、语调变化;多语种与方言支持:目前支持普通话、英文,以及三种中文方言(北京话、上海话、四川话);多音色选择:提供不同性别、语调和口音的声音,适配多样化场景。
2025-07-03 18:14:08
1342
1
原创 AI大模型落地避坑指南:不懂这3步框架,90%企业烧钱打水漂!
在数字化浪潮席卷全球的今天,企业如何在激烈的市场竞争中脱颖而出?答案或许就藏在“大数据”与“人工智能”的交汇处——大模型!它不是冷冰冰的科技名词,而是能让你的业务效率飙升、成本骤降、客户满意度爆棚的“魔法师”。想知道如何让大模型在你的企业里“大展身手”?这篇文章将带你从零开始,解锁大模型的落地秘籍,点燃你的商业“核动力”!
2025-07-03 17:42:43
738
原创 OCR推理大模型全军覆没?OCR-Reasoning基准揭示多模态大模型推理短板
近年多模态推理模型在数学题、学科题上表现出色(MathVista, MMMU等),但 OCR 相关 的复杂任务——比如看促销海报算计算最便宜买法、分析财务报表、规划最优路线、处理票据信息——它们的“真本事”到底如何?长期以来,竟然没有一个系统性的评测标准来检验这些核心 OCR 推理能力! 现在,填补这一巨大空白的基准——OCR-Reasoning——终于发布!
2025-07-02 14:11:29
558
原创 从8万+数据源提炼洞察,ChatGPT+Zilliz +LangChain如何成创新药研发新范式
RAG如何变革传统医药研发的临床流程通常来说,一款创新药的研发时间,大概在十年上下。进一步细分,则可以分为三个阶段:早期研究与预临床阶段大约 3-6年;临床开发阶段(I期、II期、III期)约 6-10年;市场推广阶段:约 2-5年。其中,临床往往是耗时最久,资本投入最大的阶段。
2025-07-02 11:40:00
901
原创 清华|再反转?确认RL并未真正提升基础模型推理能力!
强化学习真的在激励LLM发展出超越其基础模型的新推理能力吗? 还是说,它仅仅是让模型更高效地“利用”了那些已经“隐藏”在基础模型里的能力?换句话说,RLVR是在“创造新知识”还是在“优化已有知识的检索效率”?这个问题至关重要,因为它直接关系到我们对LLM能力边界和未来发展路径的判断。作者的动机就是要通过严谨的实验,拨开RLVR成功的表象,探究其背后的真实作用机制。
2025-07-01 14:51:11
1025
原创 一文讲清AI大模型9种 MCP 架构设计模式剖析,零基础小白收藏这一篇就够了!!
MCP 是 AI 应用与能力(tools、prompts、resources)之间的通用连接器,类似于 USB-C 为电子设备之间的连接提供了标准化接口。MCP 把原来获取数据 的 M×N 集成问题,通过统一、标准化的接口打破了这种模式,优化为 M + N 集成问题,大大简化了架构设计和提升了效率。
2025-07-01 11:32:36
493
原创 10% KV Cache实现无损数学推理!这个开源方法解决推理大模型「记忆过载」难题
推理大模型虽好,但一个简单的算数问题能推理整整三页,还都是重复的“废话”,找不到重点……一种可以把大模型的“碎碎念”转化为可控记忆条目的高效压缩方法,出现了!R-KV开源登场:显存↓90%、吞吐×6.6、准确率=100%。它可以通过实时对token进行排序,兼顾重要性和非冗余性,仅保留信息丰富且多样化的token,从而解决大模型推理时的冗余问题。让“长时间推理”不再是奢侈品。
2025-06-30 21:07:13
802
原创 【AI大模型】5分钟了解GraphRAG和Mem0,全程干货,小白也能轻松学会!!
什么是Graph RAG?一句话概括:基于图+向量混合存储技术的RAGGraph RAG是微软开发的一种基于图数据库的检索增强生成(Retrieval-Augmented Generation)技术,它将传统的向量检索与图数据库的语义关系相结合,提供更精准的信息检索和生成能力。
2025-06-30 20:41:59
565
原创 越用越聪明or越学越崩?首个终身学习Agent基准来了,全面评估智能体进化潜能
在大模型智能体如火如荼的发展中,一个关键但仍被忽视的问题是——它们是否具备终身学习的能力?也就是说,在面对环境中的持续新任务与知识时,是否能够有效学习、适应、保留过去经验、并防止遗忘?本文介绍了一项专为评估此类能力而设计的新基准:LifelongAgentBench,系统地检验当前大模型智能体在终身学习中的表现。
2025-06-29 08:00:00
963
原创 【AI大模型】Ollama发布更新,支持带工具调用的流式响应
实时交互和即时响应是AI应用体验的关键,但阻塞式的工具调用往往会打断内容的流畅性,导致用户在模型与外部工具交互时经历不必要的等待。Ollama 近日推出v0.8更新,带来了带工具调用的流式响应 (Streaming responses with tool calling) 功能,让开发者构建的聊天应用从此能够像流式输出普通文本一样,实时地调用工具并展示结果。
2025-06-28 11:28:18
1051
原创 多智能体到底该不该建?Anthropic、Cognition 与 LangChain 的三种解法,零基础小白收藏这一篇就够了!!
大模型驱动的 AI 智能体(Agent)架构最近讨论的很激烈,其中一个关键争议点在于:多智能体到底该不该建?
2025-06-28 10:33:22
786
原创 【AI大模型】万字长文!大模型(LLM)推理优化技术总结(非常详细),零基础小白收藏这一篇就够了!!!
大模型训练成本很高,且在推理过程中需要大量的计算资源,为了能够实现大模型应用落地,需解决大模型推理成本、模型响应速度等问题,这就需要对大模型进行推理优化。
2025-06-27 13:42:59
864
原创 华为中科大联创大模型低比特量化算法,1‰数据实现昇腾无损压缩7倍
大模型,如今堪称AI界的「吞金巨兽」。从写诗到解题,从对话到编程,它们几乎无所不能,但动辄千亿甚至万亿参数的规模,让部署成本高得离谱。以FP16精度部署的DeepSeek-R1 671B为例,推理时大概需要1342GB的显存,如果是32GB 5090显卡,需要整整42张!为了降低成本,天才工程师们想出了后训练量化(Post-training Quantization,PTQ)的方法, 它能够在有限的校准数据和计算资源下对模型进行高效压缩。
2025-06-27 12:31:10
701
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人