AI领域名家名作,大模型学习书籍推荐-关于大模型的教科书(附pdf)

目前国内关于大模型的教科书已经至少有三本了,而且都是公开了pdf版本可以直接下载的。

img

《大语言模型》

《大语言模型》是一本由中国人民大学高瓴人工智能学院教授赵鑫等编著的书籍,旨在为大模型技术的入门读者提供系统性的知识讲解,展现一个完整的大模型技术框架和发展路线图。以下是对该书的详细评价:

一、书籍背景与目的

  • 背景:
  • 随着人工智能技术的飞速发展,大语言模型(Large Language Model, LLM)作为自然语言处理(NLP)领域的重大突破,正逐步改变我们与计算机交互的方式。然而,对于许多初学者来说,大模型技术仍然显得复杂和难以掌握。
  • 目的:
  • 本书旨在填补这一空白,通过系统性的知识讲解和实例分析,帮助读者深入理解大模型技术的核心原理和应用场景。

二、书籍内容

  • 内容结构

    • 背景与基础知识:
    • 介绍大语言模型的基本概念、发展历程以及相关的深度学习基础。
    • 预训练技术:
    • 详细阐述大语言模型在预训练阶段的关键技术和方法。
    • 微调与对齐:
    • 讨论如何通过微调和对齐技术,使大语言模型更好地适应特定的任务或领域。
    • 使用与评测:
    • 介绍大语言模型在实际应用中的部署和评测方法。
  • 核心亮点

    • 系统性:
    • 本书注重展现一个完整的大模型技术框架和发展路线图,帮助读者建立系统性的知识体系。
    • 实用性:
    • 通过大量的实例和案例分析,将理论知识与实际应用紧密结合,提高读者的实践能力。
    • 前瞻性:
    • 本书不仅介绍了当前大语言模型的最新进展,还探讨了未来的发展趋势和挑战。

三、书籍特点

  • 通俗易懂:
  • 本书采用通俗易懂的语言,避免使用过多的专业术语和复杂的数学公式,使初学者也能轻松上手。
  • 图文并茂:
  • 通过大量的图表和插图,直观地展示大语言模型的工作原理和应用场景。
  • 开源资源:
  • 本书提供了大量的开源资源和代码示例,方便读者进行实践和学习。

四、书籍适用人群

  • 高年级本科生:
  • 对于具有深度学习基础的高年级本科生来说,本书是一本很好的入门读物,可以帮助他们快速掌握大模型技术的核心原理和应用方法。
  • 低年级研究生:
  • 对于低年级研究生来说,本书可以作为他们深入研究大模型技术的起点,为他们后续的科研工作打下坚实的基础。
  • 技术人员和爱好者:
  • 对于从事人工智能领域的技术人员和爱好者来说,本书也是一本不可多得的参考资料,可以帮助他们了解大模型技术的最新进展和应用场景。

五、书籍评价

  • 读者反馈:
  • 据读者反馈,本书内容全面、系统性强,适合作为大模型技术的入门读物。书中的实例和案例分析非常实用,能够帮助读者快速掌握大模型技术的核心原理和应用方法。
  • 专家推荐:
  • 本书得到了多位人工智能领域专家的推荐和认可,被认为是一本具有很高参考价值的书籍。

概括来说,《大语言模型》是一本非常适合大模型技术入门读者的书籍,它注重展现一个完整的大模型技术框架和发展路线图,通过系统性的知识讲解和实例分析,帮助读者深入理解大模型技术的核心原理和应用场景。对于高年级本科生、低年级研究生以及从事人工智能领域的技术人员和爱好者来说,本书都是一本不可多得的参考资料。

img

√√《大模型基础》

《大模型基础》是一本由浙江大学DAILY实验室的毛玉仁研究员和高云君教授领衔撰写的大模型领域教材,其独特之处在于其“月度更新”的机制,旨在紧跟大模型技术的快速发展步伐,为读者提供最新、最全面的知识。以下是对该书的详细评价和分析:

一、书籍特点

  1. 紧跟技术前沿:

    • 月度更新:
    • 鉴于大模型技术近年来的迅猛发展,本书自发布以来不断进行月度更新,确保内容的时效性和准确性。
    • 最新技术:
    • 书中不仅涵盖了大模型的基础知识,还介绍了最新的技术进展和研究成果,使读者能够紧跟技术前沿。
  2. 易读性:

    • 生动形象:
    • 每章内容都以一种动物为主题进行讲解,如以“猫”为主题介绍Transformer架构,使复杂的技术概念更加生动易懂。
    • 深入浅出:
    • 采用通俗易懂的语言,避免过多的专业术语和复杂的数学公式,帮助读者快速掌握核心知识。
  3. 严谨性:

    • 学术严谨:
    • 内容基于严谨的学术研究和实验数据,确保知识的准确性和可靠性。
    • 引用权威:
    • 书中引用了大量权威论文和研究成果,为读者提供深入学习的参考资源。
  4. 有深度:

    • 全面系统:
    • 内容涵盖了传统语言模型、大语言模型的架构、提示工程、高效参数设置、模型编辑以及搜索增强生成等关键主题。
    • 深入探讨:
    • 对每个主题都进行了深入的探讨和分析,帮助读者建立全面的知识体系。

二、书籍内容

  1. 传统语言模型:

    • 介绍语言模型的基本概念、发展历程以及传统的统计语言模型。
  2. 大语言模型架构:

    • 详细阐述大语言模型的架构和原理,如Transformer架构等。
    • 介绍不同架构的特点和优缺点,帮助读者选择适合的模型架构。
  3. 提示工程:

    • 探讨如何通过提示工程优化大语言模型的性能和应用效果。
    • 介绍提示工程的基本原理和方法,以及在实际应用中的案例。
  4. 高效参数设置:

    • 讨论如何设置高效的模型参数,以提高模型的训练速度和性能。
    • 介绍参数调优的方法和技巧,帮助读者提高模型的泛化能力。
  5. 模型编辑:

    • 介绍模型编辑的基本原理和方法,以及在实际应用中的案例。
    • 探讨如何通过模型编辑优化模型的结构和性能。
  6. 搜索增强生成:

    • 介绍搜索增强生成的基本原理和方法,以及在实际应用中的案例。
    • 探讨如何通过搜索增强生成提高模型的生成质量和多样性。

三、书籍适用人群

  • 高年级本科生:
  • 对于具有深度学习基础的高年级本科生来说,本书是一本很好的入门读物,可以帮助他们快速掌握大模型技术的核心知识。
  • 低年级研究生:
  • 对于低年级研究生来说,本书可以作为他们深入研究大模型技术的起点,为他们后续的科研工作打下坚实的基础。
  • 技术人员和爱好者:
  • 对于从事人工智能领域的技术人员和爱好者来说,本书也是一本不可多得的参考资料,可以帮助他们了解大模型技术的最新进展和应用场景。

四、书籍优势

  1. 实时更新:

    通过月度更新机制,确保内容的时效性和准确性。

  2. 易读性强:

    采用生动形象的讲解方式和通俗易懂的语言,降低阅读门槛。

  3. 学术严谨:

    内容基于严谨的学术研究和实验数据,确保知识的准确性和可靠性。

  4. 有深度有广度:

    内容全面系统,深入探讨大模型技术的各个方面。

五、总结

《大模型基础》是一本紧跟大模型技术前沿、易读性强、严谨性高、有深度有广度的教材。通过月度更新机制,确保内容的时效性和准确性;采用生动形象的讲解方式和通俗易懂的语言,降低阅读门槛;基于严谨的学术研究和实验数据,确保知识的准确性和可靠性。对于想要深入了解大模型技术的读者来说,本书是一本不可多得的参考资料。

img

√√√《大规模语言模型:从理论到实践》

《大规模语言模型:从理论到实践》是一本由复旦大学计算机科学技术学院张奇教授领衔的团队编写的专业书籍,旨在帮助读者深入理解大语言模型的原理,并提供实际操作的指导和案例。以下是对该书的详细介绍:

一、书籍概述

  • 书名:
  • 《大规模语言模型:从理论到实践》
  • 作者:
  • 复旦大学计算机科学技术学院张奇教授领衔的团队
  • 出版情况:
  • 该书于2024年1月由电子工业出版社出版,并在多个平台提供电子版资源
  • 目标读者:
  • 适合对大规模语言模型感兴趣的研究人员、学生以及算法研究员

二、书籍内容结构

本书围绕大语言模型构建的四个主要阶段展开,详细介绍了每个阶段使用的算法、数据、难点以及实践经验:

  1. 预训练阶段

    • 内容概述:
    • 介绍了如何利用包含数千亿甚至数万亿单词的训练数据,并借助超级计算机进行深度神经网络参数的训练。
    • 关键算法:
    • 详细阐述了预训练阶段使用的关键算法,如Transformer等。
    • 数据处理:
    • 探讨了如何构建训练数据以及高效地进行分布式训练。
    • 实践难点:
    • 分析了预训练阶段面临的挑战,如训练数据的规模和质量、计算资源的分配等。
  2. 有监督微调阶段

    • 内容概述:
    • 讲解了如何利用少量高质量的数据集,通过提示学习和语境学习等方法,将语言模型转变为对话模型。
    • 关键算法:
    • 介绍了微调阶段使用的关键算法,如模型上下文窗口的扩展等。
    • 数据处理:
    • 详细说明了如何构建微调阶段所需的训练数据及其内部关系。
    • 实践难点:
    • 分析了微调阶段面临的挑战,如训练数据的标注质量、模型的泛化能力等。
  3. 奖励建模阶段

    • 内容概述:
    • 介绍了如何根据用户提示词,利用奖励模型评估模型补全结果的质量。
    • 关键算法:
    • 详细阐述了奖励建模阶段使用的关键算法。
    • 数据处理:
    • 探讨了如何构建奖励建模阶段所需的训练数据。
    • 实践难点:
    • 分析了奖励建模阶段面临的挑战,如奖励模型的准确性、稳定性等。
  4. 强化学习阶段

    • 内容概述:
    • 介绍了如何通过强化学习进一步优化模型性能。
    • 关键算法:
    • 详细阐述了强化学习阶段使用的关键算法,如近端策略优化(PPO)等。
    • 数据处理:
    • 探讨了如何构建强化学习阶段所需的训练数据。
    • 实践难点:
    • 分析了强化学习阶段面临的挑战,如强化学习方法的稳定性、超参数的选择等。

三、书籍特点

  1. 系统性:

    本书系统地介绍了大语言模型构建的四个主要阶段,为读者提供了全面的知识体系。

  2. 实践性:

    书中不仅介绍了理论知识,还提供了大量的实践案例和代码示例,帮助读者更好地理解和应用所学知识。

  3. 权威性:

    作者团队在自然语言处理领域具有丰富的研究经验,并在多个重要会议和刊物上发表了大量论文,确保了书籍内容的权威性和准确性。

  4. 易读性:

    书中采用了简洁明了的语言和图表,降低了阅读门槛,使读者能够轻松上手。

四、书籍价值

  1. 学术价值:

    本书为大语言模型领域的研究人员提供了系统的理论知识和实践案例,有助于推动该领域的发展。

  2. 教育价值:

    本书适合作为高年级本科生和研究生自然语言处理相关课程的补充教材,帮助他们快速掌握大语言模型的核心知识。

  3. 应用价值:

    本书为希望将大语言模型应用于实际问题解决的研发人员提供了重要的参考和指导,有助于推动人工智能技术在各个领域的应用。

概括来说,《大规模语言模型:从理论到实践》是一本系统、实用、权威且易读的大语言模型教材,对于希望深入了解大语言模型原理和应用的读者来说具有重要的参考价值。

三本书的选择上,相对来说,似乎是《大模型基础》适合入门,《大语言模型》跟进新技术,《大规模语言模型:从理论到实践》更偏理论些。

这三本大模型书籍pdf已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:三本大模型书籍》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值