1、智能体是什么?
广义上,智能体(Agent)在人工智能领域中指的是一种能够感知环境并根据感知到的信息作出决策和行动的代理体。它可以是软件、硬件或一个系统,具备自主性、适应性和交互能力。
而我们通常说的智能体(Agent)是在大语言模型的基础上衍生出来的能够根据用户需求和偏好定制自己的 AI 助理,就是专门为了解决某一具体问题的定制 AI 自动服务。
有些人可能又要问了,大语言模型是什么?
我们可以把大模型想象成一个超级图书管理员。
管理员大脑中有 100万亿个记忆抽屉(神经网络参数),每个抽屉存储着词语、图像、声音之间的关联规则,远超普通图书馆员的千倍规模。
它可以用3年时间读完 3亿本书+100亿篇论文+整个互联网内容(预训练),不仅记住文字,还可以自动总结。
当你询问一个问题时,它可以快速检索关联内容并分析整理给你解答。
这个"超级管理员"现在不仅管理着图书馆,还能创作新书、修复残卷、预测未来,这正是现实中GPT-4、文心大模型等系统在数字世界的具象化体现。
2、为什么会有智能体?
既然有了大模型这么厉害的东西,为什么还会有智能体?主要还是因为大模型不够强大,具体因为有以下三点:
1.大模型训练数据的时效性,导致无法回答训练日期之后的知识。
2.大模型训练使用的是公开数据,针对企业私有数据(细分领域),无法进行回答。
3.上下文(Token)的限制,无法处理长文本
智能体(AI Agent)的出现就是为了解决这一问题的,大模型时效性不及时,我们可以联网搜索将结果投喂给大模型,让它基于投喂内容进行回答。大模型会出现幻觉并且不能够回答某个垂直领域(例如:旅游、法律、美食)的问题,我们可以将其接入细分领域知识库,让它基于知识库内容进行回答。并且我们可以提供一系列的工具或者插件供其在运行中调用。
智能体(AI Agent)是应用了大模型能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。
3、当下主流的智能体平台有哪些
下面这些智能体平台都是基于AI Agent的技术概念落地的产品。
- 字节跳动扣子Coze:https://www.coze.cn (推荐使用)
字节跳动扣子(Coze)智能体平台是我最先接触的一个智能体平台,目前有两个版本(国际/国内),集成多模态大模型接口及插件生态,聚焦内容生成与个性化定制,为新媒体、电商等垂直领域提供AI生产力工具,同步拓展跨行业解决方案。
- 百度文心智能体平台:https://agents.baidu.com/center
作为国内首批推出的智能体平台之一,依托百度在搜索、AI等领域深厚的生态积累和先发布局优势,已在智能体市场占据重要地位。该平台以知识增强大语言模型为核心技术架构,深度融合语义理解、知识图谱等基础能力,专注于文本交互类应用开发,尤其在知识问答、智能客服等领域形成技术优势。
- 腾讯元器:https://yuanqi.tencent.com/agent-shop
腾讯元器智能体平台深度集成微信生态,原生支持智能体一键部署至公众号/小程序,提供多模态交互引擎(文本/语音/图像),典型应用如智能客服系统,实现全渠道自然语义解析。
- 阿里魔塔智能体平台:https://modelscope.cn/home
魔塔智能体平台是阿里巴巴在人工智能领域的重要布局之一,它聚焦于电商、物流等阿里巴巴核心业务场景,并逐步向其他行业拓展。 该平台致力于打造智能、高效、可信赖的智能体服务,助力企业实现数字化转型和智能化升级。
- 智谱清言智能体中心:https://chatglm.cn/main/toolsCenter?lang=zh
智谱清言智能体中心基于GLM-4大模型提供无代码个性化智能体定制,支持多模态交互与长文本处理,深耕中文环境并覆盖多行业场景(如心理咨询、AUTOSAR工程等),结合云端与离线部署保障数据安全
- 通用智能体平台Menus : https://manus.im/
Manus作为国内首款通用型智能体平台,基于自主任务执行框架实现跨领域复杂任务自动化(如行程规划/金融分析/简历筛选),通过端到端工作流闭环设计突破多系统操作壁垒,其商业化落地验证了通用Agent在复杂场景中的工程化可行性,现已成为AI智能体产业化的标杆案例。
当然除了上述的几个智能体平台外还有很多的其它的智能体平台待大家一同探讨。并且Manus已经联合阿里在打造国内版的通用智能体大模型,相信不久后就会亮相中国市场。
4、智能体能做什么?
智能体(AI Agent)的应用领域非常的广泛。
大可以是一个生产级别的应用,小可以是一个简单的聊天Chat。
下图是Coze官方推荐的智能体,可以直观感受下,我们也可以制作智能体上架到平台商店。
5、智能体构建原则?
AI Agent = LLM(大模型) + Planning(规划)+ memory(记忆) + Tools(工具)
在构建智能体之前,我们首先需要清楚地知道自己的需求,了解当下智能体的能力边界。
参考上述公式,对需求进行详细拆解,并对应到上述的模块,然后一步一步构建即可。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。