【大模型基础】一文给你讲清楚什么是知识图谱和AI多模态推理!

img

大模型与知识图谱结合,构建企业智能知识管理平台,为解决上述难题提供了新的思路:大模型技术能够从海量数据中提取复杂信息,具备学习和推理能力,而知识图谱则通过图形结构,将知识进行有机整合,展示出实体之间的关系和语义信息。两个技术的结合,将实现更加便捷的知识管理、更加精准的智能问答、以及更加可靠的智能决策与分析。

一、知识图谱推理

知识图谱是一种结构化的知识库,它以图的形式表示和存储现实世界中的实体、概念及其相互关系。这些实体可以是具体的人、地点、事物,也可以是抽象的概念或思想。

  • 节点:代表现实世界中的实体(如人、地点、事物、概念等),每个实体通常由一个唯一的标识符表示。
  • 边:表示这些实体之间的关系。

知识图谱的基本组成单位是“实体—关系—实体”三元组,以及实体及其相关属性—值对,实体间通过关系相互联结,构成网状的知识结构。

KG = (E,R,T),KG表示知识图谱、E表示实体集合、R表示关系集合、T表示知识三元组集合。

img

1、 知识图谱

什么是知识图谱推理?知识图谱推理是指基于知识图谱中的事实和关系,通过逻辑、规则、统计或机器学习等方法,从已知的信息中推断出新的信息或关系的过程。知识图谱推理的目标是从有限的事实中推导出更多的知识,填补知识图谱中的空白或增强图谱的表达能力。

img

2、知识图谱推理

知识图谱推理是人工智能领域的一个重要分支,它涉及到基于知识图谱中的事实和关系,通过逻辑、规则、统计或机器学习等方法,从已知的信息中推断出新的信息或关系的过程。其目标是从有限的事实中推导出更多的知识,填补知识图谱中的空白或增强图谱的表达能力。例如,如果知识图谱中表示“A是B的父亲”和“B是C的父亲”,通过推理,我们可以得出“A是C的祖父”。

img

知识图谱推理在多个领域都有广泛的应用,包括但不限于:

img

知识图谱推理的主要技术手段分为两大类:

  1. 基于演绎的知识图谱推理:通过逻辑规则从已知事实推导出新的结论。
  2. 基于归纳的知识图谱推理:通过统计学习方法从数据中归纳出新的模式和关系。
    此外,知识图谱推理还包括基于规则的推理、基于分布式表示的推理、基于神经网络的推理和混合推理等方法。下面分别介绍

一、基于规则学习:

通过挖掘图谱中的逻辑规则,利用规则匹配和推理来预测新的实体和关系。例如:重写逻辑(Rewriting Logic),将规则表示为重写规则,并通过递归应用重写规则来进行推理。

img

二、基于路径排序:

利用图谱中实体间的路径特征进行排序学习,通过评估路径的可信度来推断实体间的关系。例如:路径排序算法(Path-Ranking Algorithm,PRA),采用随机行走和基于重启的推理机制,执行多个有界深度优先搜索过程来寻找关系路径。

img

三、基于表示学习:

将实体和关系嵌入到低维向量空间,通过向量运算和相似性度量进行推理。例如:翻译距离模型(如TransE、TransH、TransR等),这些模型为知识图谱中的每个实体和关系学习一个向量表示,并通过向量间的运算关系来推断新的实体和关系。

img

四、基于神经网络学习

利用神经网络模型捕捉图谱中的结构信息,通过神经网络的前向传播进行推理预测。例如:基于图神经网络(GNN)的推理方法,如基于注意力机制的图卷积神经网络(Graph Attention Network,GAT),通过对实体之间的相似度进行加权,来推断实体之间的关系。

img

二、多模态推理任务

多模态推理任务是指利用多种感知模态的信息进行综合分析和判断的过程。多模态推理涉及至少两种不同的感知模态,最常见的是视觉和语言。这两种模态的信息可以是图片和文本、视频和语音等。多模态推理的目标是从不同模态的信息中获取更全面、更准确的理解和知识,以支持各种任务,包括视觉问答、视觉常识推理、视觉语言导航等。

img

1、多模态推理任务

多模态推理的目标是从不同模态的信息中获取更全面、更准确的理解和知识,以支持各种任务,包括视觉问答、视觉常识推理、视觉语言导航等。多模态推理在多个领域都有广泛的应用,包括但不限于:

  1. 人机交互:通过结合语音、图像和文本等多种输入方式,提高人机交互的自然性和效率。
  2. 机器人控制:在机器人技术中,多模态模型可以帮助机器人更好地理解和响应复杂的环境输入。
  3. 多模态情感分析:充分利用多个模态数据中的情感信息,提高情感分析的水平。
  4. 多模态事件检测:检测不同模态数据中发生的事件,并对事件进行分类和定位。
  5. 多模态生成任务:生成具有多个模态的数据,比如文本和图像的生成、音频和视频的生成等。

img
多模态推理的技术手段包括:

  1. 表示学习:将不同模态的数据转换为统一的特征表示,使得模型能够同时处理和理解这些模态。
  2. 对齐(Alignment):研究不同模态元素间的对齐关系,包括显式对齐和隐式对齐。
  3. 融合(Fusion):整合来自不同模态的特征信息,以提高模型的决策能力。
  4. 协同推理(Cooperative Reasoning):不同模态的信息协同工作,共同支持复杂任务的推理过程。

img

2、多模态推理

一、视觉问答(Visual Question Answering,VQA)

视觉问答指的是给机器一张图片和一个开放式的自然语言问题,要求机器输出自然语言答案。答案可以是短语、单词、(yes/no)或从几个可能的答案中选择正确答案。

  • VQA是一个典型的多模态问题,融合了计算机视觉(CV)与自然语言处理(NLP)的技术,计算机需要同时学会理解图像和文字。
  • 为了回答某些复杂问题,计算机还需要了解常识,并基于常识进行推理(common-sense resoning)。

img

二、视觉常识推理(Visual Commonsense Reasoning,VCR)

视觉常识推理需要在理解文本的基础上结合图片信息,基于常识进行推理。给定一张图片、图中一系列有标签的bounding box,VCR实际上包含两个子任务:{Q->A}根据问题选择答案;{QA->R}根据问题和答案进行推理,解释为什么选择该答案。

  • VCR数据集由大量的“图片-问答”对组成,主要考察模型对跨模态的语义理解和常识推理能力。
  • 预训练任务可能包括将BERT经典的MLM和NSP预训练任务扩展到多模态场景等。

img

三、视觉语言导航(Vision Language Navigation)

视觉语言导航是一种技术,它结合了计算机视觉、自然语言处理和自主学习三大核心技术,使智能体能够跟随自然语言指令进行导航。

  • 智能体不仅能够理解指令,还能理解指令与视角中可以看见的图像信息。
  • 智能体需要在环境中对自身所处状态进行调整和修复,最终做出对应的动作,以达到目标位置。

img

三、多模态AI的实际应用

多模态AI已经在多个领域展现了强大的潜力,以下是一些实际应用的案例:

1、医疗领域

多模态AI在医疗中的应用非常广泛,尤其是在医疗影像分析、病历记录整合等方面。通过将医学影像(如CT扫描、MRI等)和患者的文字病历数据结合,AI能够为医生提供更准确的诊断建议。这种多模态整合可以极大提升医生的诊断效率,减少误诊率。

2、智能家居

多模态AI在智能家居中的应用非常广泛,尤其是在影像分析、IoT记录整合等方面。通过将影像(如CT扫描、MRI等)和者的文字数据结合,AI能够为医生提供更准确的设备连接建议。这种多模态整合可以极大提升家居的诊断效率,减少误诊率。

3、虚拟助手

多模态AI使得虚拟助手变得更加智能,能够同时处理语音、文字和图像。未来的虚拟助手可能不只是听你说话,它们还能够“看”到你展示的图片或视频。例如,你可以向虚拟助手展示一个视频,询问它某个场景的详细情况,虚拟助手能快速理解并给出答案。

4、教育与内容创作

多模态AI可以根据图像生成详细的文字描述,或者根据给定的文字生成相关的图像和视频。这种能力在教育领域特别有用,教师可以使用AI生成跨模态的教育材料,学生则可以更直观地理解复杂的概念。

img

多模态AI的未来与挑战多模态AI在开发和应用过程中面临多种挑战,但这些挑战也为未来的发展提供了机遇和方向未来研究方向包括:

  1. 多模态大模型算法的挑战与预训练模型的兴起:探索多模态大模型算法的发展,以及如何利用预训练模型提升多模态推理能力。
  2. 跨模态语义对齐:改善不同模态之间的语义对齐,以实现更准确的多模态信息整合。
  3. 多模态AI的五大研究方向:包括视觉理解、视觉生成、统一视觉模型、LLM支持的多模态大模型、多模态Agent等。
    多模态推理作为人工智能领域的一个重要分支,正不断发展和进步,其在实现更智能、更全面的交互系统方面具有巨大潜力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值