一、引言
1、什么是Dify
Dify是一个开源的大语言模型(LLM)应用开发平台,旨在简化和加速生成式AI应用的创建和部署。Dify结合了后端即服务(Backend as Service, BaaS)和LLMOps(大语言模型运维)的理念,为开发者提供了一个完整的AI应用开发环境。
2、Dify应用场景
- 内容创作与生成
- 自动化写作: Dify可以用于生成文章、报告、新闻稿等文本内容,特别适合需要大量文本产出的行业,如媒体、广告、市场营销等。
- 创意激发: 对于设计师、作家、艺术家等创意工作者,Dify可以提供灵感和创意素材,帮助他们更快地产出高质量的作品。
- 智能客服与对话系统
- 聊天机器人: Dify可以构建高度智能的聊天机器人,用于客户服务、在线教育、娱乐互动等场景。
- 虚拟助手: 为个人或企业提供虚拟助手服务,如日程管理、邮件回复、信息查询等。
- 数据分析与预测
- 数据解读: Dify可以分析并解读复杂的数据集,生成易于理解的报告和见解。
- 预测分析: 基于历史数据,Dify可以构建预测模型,用于市场趋势预测、销售预测等。
- 业务自动化与流程优化
- 自动化任务: Dify可以自动化处理业务流程中的重复任务,如数据录入、邮件发送、报告生成等。
- 流程优化: 通过分析业务流程,Dify可以提出优化建议,降低运营成本,提高工作效率。
- 个性化推荐与营销
- 用户画像: Dify可以分析用户行为数据,构建用户画像,为个性化推荐和营销提供基础。
- 内容推荐: 基于用户兴趣和历史行为,Dify可以推荐相关的内容、产品或服务。
二、Dify的核心功能与特点
1、核心功能
多模型集成与支持:
- Dify支持数百种专有和开源的大语言模型(LLMs),包括GPT、Claude、Llama等热门选项,以及任何与OpenAI API兼容的模型。
- 用户可以根据项目需求选择合适的模型,并轻松实现模型的切换和更新。
Prompt编排与IDE:
- Dify提供了直观的Prompt编排界面,允许用户轻松定义、调整和优化Prompt,以提高AI交互的效果。
- 内置的Prompt IDE支持制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能,如文本转语音等。
RAG管道与检索增强:
- Dify内置了高质量的RAG(检索增强生成)引擎,支持从文档中提取和检索信息,以增强AI应用的智能性和准确性。
- 用户可以基于LLM函数调用或ReAct定义Agent,并为Agent添加预构建或自定义工具,以实现更复杂的任务处理。
Agent智能体框架:
- Dify提供了灵活的Agent框架,允许用户创建能够分解任务、推理思考、调用工具的对话式智能助手。
- Agent可以自主调用Dify提供的50多种内置工具,如谷歌搜索、DALL·E、Stable Diffusion和WolframAlpha等,以完成各种复杂任务。
工作流管理与编排:
- Dify支持AI工作流的编排和管理,允许用户定义复杂的工作流程,包括顺序执行、条件逻辑、并行处理等。
- 通过工作流管理,用户可以更好地管理和优化AI应用的性能,提高工作效率。
模型管理与优化:
- Dify提供了模型管理功能,支持模型的上传、配置、训练和微调。
- 通过Enterprise LLMOps支持,用户可以持续迭代和优化模型,以适应不断变化的需求。
2、特点
低代码/无代码开发:
- Dify采用低代码/无代码的开发方式,使得非技术人员也能轻松参与AI应用的定义和数据操作。
- 用户可以通过直观的界面和模块化的设计,快速构建和部署AI应用。
云服务与自托管选项:
- Dify提供了云服务选项,用户无需自己部署即可使用其完整功能。
- 同时,Dify也支持自托管部署,包括Docker Compose部署和本地码源部署等方式,以满足不同用户的需求。
强大的集成与部署能力:
- Dify支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力。
- 它还提供了丰富的API接口和SDK,方便用户将Dify的功能集成到自己的应用中。
数据安全和隐私保护:
- Dify通过RAG Pipeline确保私有数据的安全和隐私。
- 它采用了先进的加密技术和安全协议,保护用户数据不被泄露或滥用。
易用性和可扩展性:
- Dify的界面设计简洁直观,易于上手。
- 同时,它也提供了丰富的扩展选项和插件支持,以满足用户不断增长的需求。
三、准备工作
1、操作系统
这里我们使用的操作系统为 Centos 7.9,大家也可以使用其他的操作系统,Windows或者Linux都可以,下面以Centos 7.9为例。
配置要求:
- CPU >= 2 Core
- RAM >= 4 GiB
2、镜像准备
安装Dify需要使用到docker镜像,虽然可以通过网络拉取,但是速度太慢了,推荐大家提前准备好离线镜像传上去。
3、安装docker
添加阿里镜像源
`curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo`
安装依赖项
`yum install -y yum-utils device-mapper-persistent-data lvm2`
配置docker yum源
`yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo`
安装docker
`yum install docker-ce -y`
配置docker镜像加速器
vim /etc/docker/daemon.json
#添加如下内容
{
"registry-mirrors": [
"https://docker.m.daocloud.io",
"https://noohub.ru",
"https://huecker.io",
"https://dockerhub.timeweb.cloud",
"https://0c105db5188026850f80c001def654a0.mirror.swr.myhuaweicloud.com",
"https://5tqw56kt.mirror.aliyuncs.com",
"https://docker.1panel.live",
"http://mirrors.ustc.edu.cn/",
"http://mirror.azure.cn/",
"https://hub.rat.dev/",
"https://docker.ckyl.me/",
"https://docker.chenby.cn",
"https://docker.hpcloud.cloud",
"https://docker.m.daocloud.io"
]
}
启动docker
`systemctl start docker`
4、安装docker-compose
下载docker-compose包,下载地址:Release v2.33.1 · docker/compose · GitHub
重命名
`mv docker-compose-linux-x86_64 docker-compose`
添加执行权限
`chmod +x docker-compose`
移动到/bin下
`mv docker-compose /usr/bin/`
查看版本
`docker-compose --version`
四、安装Dify
1、安装Dify
克隆代码至本地
`git clone https://github.com/langgenius/dify.git`
切换目录
`dify/docker/`
复制环境配置文件
`cp .env.example .env`
启动
`docker-compose up -d`
检查容器状态
`docker ps`
2、访问测试
在浏览器输入服务器地址,如果能访问到下面的页面,则安装成功
五、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。