PAT DS 2-13两个有序序列的中位数

本文深入探讨了在二分查找算法中通过优化时间复杂度至O(lgn)的同时,如何合理处理左右端点并确保算法正确性。特别关注了避免数据输入导致的O(n)时间复杂度增加,并详细解释了输出判断的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

没有用时间O(n)的遍历,直接用O(lgn)的二分查找,不过辅助空间大了一倍。

对二分时的左右端处理(还有循环判断)想了很久,之前没有对m1+m2作判断,导致划分不均匀,结果一直错。

关键在于保证,m1和m2对两条序列的划分能一直保持平分。

#include <stdio.h>

#define debug	printf

int n;
int s1[100000], s2[100000];

int main()
{
	freopen("in.txt", "r", stdin);
	scanf("%d", &n);
	int i;
	for(i=0; i<n; i++)
		scanf("%d", s1+i);
	for(i=0; i<n; i++)
		scanf("%d", s2+i);
	int l1=0, l2=0, r1=n-1, r2=n-1, m1, m2;
	while((r1-l1)>=0 && (r2-l2)>=0){
		m1 = (l1+r1)/2;
		m2 = (l2+r2)/2;
		if(s1[m1] == s2[m2]){
			printf("%d", s1[m1]);
			return 0;
		}
		else if(s1[m1] > s2[m2]){
			if(m1+m2 == n-1){
				r1 = m1-1;
				l2 = m2;
			}
			else{
				r1 = m1;
				l2 = m2+1;
			}
		}
		else {
			if(m1+m2 == n-1){
				l1 = m1;
				r2 = m2-1;
			}
			else{
				l1 = m1+1;
				r2 = m2;
			}
		}
		debug("%d %d %d - %d %d %d\n", l1, r1, m1, l2, r2, m2);
	}
	if(l1 == r1) printf("%d", s1[l1]);
	else printf("%d", s2[l2]);

	return 0;
}


最后输出哪一个的判断也很重要,需要考虑循环跳出后的所有情况(必定有一个左端记录超过了右端)。


补:现在发现数据输入就要O(n)时间了,O_T...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值