在现代人工智能的应用中,使用ChatGPT插件将ChatGPT连接到第三方应用程序,为其增添了强大的互动能力。通过这些插件,ChatGPT不仅能够获取实时信息和知识库信息,还可以代表用户执行一些操作,如预订航班或订餐。
本文将向您展示如何在LangChain中使用ChatGPT检索插件来查询文档信息,步骤包括加载数据、转换格式和实际使用插件。
技术背景介绍
ChatGPT插件的目的在于扩展ChatGPT的功能,使其能够与定义的API进行交互。通过使用这些插件,ChatGPT可以从外部数据源提取信息,并在应用中执行更复杂的任务。
核心原理解析
在这次集成中,我们将利用LangChain的文档加载器加载CSV文件,转换为Python字典格式,然后通过OpenAI的插件检索API调用获取信息。
代码实现演示
STEP 1: 加载文档
首先,我们要使用LangChain的CSVLoader
来加载CSV文档。这是一个非常有效的方式来处理结构化数据。
from langchain_community.document_loaders import CSVLoader
from langchain_core.documents import Document
# 加载CSV文件
loader = CSVLoader(
file_path="../../document_loaders/examples/example_data/mlb_teams_2012.csv"
)
data = loader.load()
STEP 2: 转换格式
接下来,我们将文档转换成ChatGPT检索插件所需的JSON格式。
import json
from typing import List
def write_json(path: str, documents: List[Document]) -> None:
# 将文档内容转换为JSON格式
results = [{"text": doc.page_content} for doc in documents]
with open(path, "w") as f:
json.dump(results, f, indent=2)
write_json("foo.json", data)
STEP 3: 使用插件
最后一步是通过调用ChatGPT检索插件来查询数据。确保有OpenAI API的访问权限。
import getpass
import os
# 设置OpenAI API Key
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.retrievers import ChatGPTPluginRetriever
# 初始化检索插件
retriever = ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo")
# 调用插件进行查询
result = retriever.invoke("alice's phone number")
print(result)
应用场景分析
这种插件机制非常适合在复杂信息系统中使用,尤其是需要动态获取和处理多种外部数据源的场景。例如,企业的知识库管理、实时数据获取和智能搜索引擎等。
实践建议
- 确保API密钥的安全性,不要将其硬编码到源代码中。
- 优化JSON数据的结构,以便更快速的检索和响应。
- 对数据进行预处理,确保加载过程的高效性。
如果遇到问题欢迎在评论区交流。
—END—