利用LangChain与ChatGPT检索插件实现文档查询

在现代人工智能的应用中,使用ChatGPT插件将ChatGPT连接到第三方应用程序,为其增添了强大的互动能力。通过这些插件,ChatGPT不仅能够获取实时信息和知识库信息,还可以代表用户执行一些操作,如预订航班或订餐。

本文将向您展示如何在LangChain中使用ChatGPT检索插件来查询文档信息,步骤包括加载数据、转换格式和实际使用插件。

技术背景介绍

ChatGPT插件的目的在于扩展ChatGPT的功能,使其能够与定义的API进行交互。通过使用这些插件,ChatGPT可以从外部数据源提取信息,并在应用中执行更复杂的任务。

核心原理解析

在这次集成中,我们将利用LangChain的文档加载器加载CSV文件,转换为Python字典格式,然后通过OpenAI的插件检索API调用获取信息。

代码实现演示

STEP 1: 加载文档

首先,我们要使用LangChain的CSVLoader来加载CSV文档。这是一个非常有效的方式来处理结构化数据。

from langchain_community.document_loaders import CSVLoader
from langchain_core.documents import Document

# 加载CSV文件
loader = CSVLoader(
    file_path="../../document_loaders/examples/example_data/mlb_teams_2012.csv"
)
data = loader.load()

STEP 2: 转换格式

接下来,我们将文档转换成ChatGPT检索插件所需的JSON格式。

import json
from typing import List

def write_json(path: str, documents: List[Document]) -> None:
    # 将文档内容转换为JSON格式
    results = [{"text": doc.page_content} for doc in documents]
    with open(path, "w") as f:
        json.dump(results, f, indent=2)

write_json("foo.json", data)

STEP 3: 使用插件

最后一步是通过调用ChatGPT检索插件来查询数据。确保有OpenAI API的访问权限。

import getpass
import os

# 设置OpenAI API Key
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

from langchain_community.retrievers import ChatGPTPluginRetriever

# 初始化检索插件
retriever = ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo")

# 调用插件进行查询
result = retriever.invoke("alice's phone number")

print(result)

应用场景分析

这种插件机制非常适合在复杂信息系统中使用,尤其是需要动态获取和处理多种外部数据源的场景。例如,企业的知识库管理、实时数据获取和智能搜索引擎等。

实践建议

  • 确保API密钥的安全性,不要将其硬编码到源代码中。
  • 优化JSON数据的结构,以便更快速的检索和响应。
  • 对数据进行预处理,确保加载过程的高效性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值