动态规划基础题:洛谷P1002过河卒(代码加注释)

之前写好的代码加很详细的解释,希望能看懂(水一下文章)


题目很短,其实不怎么难,代码也只是基础演示,非常适合新手小白去理解

代码+解释如下:

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
//要对整个棋盘建模,找到整个题目的递推式子,找到综合条件
//对特殊点进行赋值
//找到终止条件
//非常经典的递推题目 
long long xb,yb;// 终点坐标
long long xh,yh;//马的坐标 
long long pand[30][30]={0},f[30][30]={0}; 
//pand为矩阵,里面pand=1时f=0表示不能走,f=1表示可以走
//f则表示矩阵中对应的点的路数,存储路径值 
int main(){
	//输入
	cin>>xb>>yb>>xh>>yh;
	//加一个保护层,把数向下向右平移一下 
	xb += 2;yb += 2;
	xh += 2;
	yh += 2; 
	//边界进行赋值
	for(int i=2;i<30;i++){
		f[2][i]=1;
		f[i][2]=1;
	}
	//马对应的特殊点进行赋值
	pand[xh][yh] = 1;
	pand[xh-2][yh-1]=1;
	pand[xh-2][yh+1]=1;
	pand[xh-1][yh-2]=1;
	pand[xh-1][yh+2]=1;
	pand[xh+1][yh-2]=1;
	pand[xh+1][yh+2]=1;
	pand[xh+2][yh-1]=1;
	pand[xh+2][yh+1]=1;
	//递推的计算f(x,y) 
	//将第一个点的上面或者左边的值设为1
	f[1][2]=1;//表示能走 
	for(long long i=2;i<=xb;i++){
		for(long long j=2;j<=yb;j++){
			if(pand[i][j]==1){
				f[i][j]=0;
				continue;
				//不能走的可以直接跳过 
			}
			f[i][j]=f[i-1][j]+f[i][j-1];
		}
	}
	//输出
	cout<<f[xb][yb]<<endl; 
	//每个点的数量是由上面那个数和左边的数的相加而得到的
	// 判断马跳 的位置是否出界,我们可以在矩阵外面加几行保护层
	//保护层的点全部赋值为0,多开两行,两列,防止数组越界
	 
	return 0;
}

这里是红糖,记录我的小白进化史。

希望能帮到你们,创作不易,如果觉得有帮助可以为我点个赞!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值