之前写好的代码加很详细的解释,希望能看懂(水一下文章)
题目很短,其实不怎么难,代码也只是基础演示,非常适合新手小白去理解
代码+解释如下:
#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
//要对整个棋盘建模,找到整个题目的递推式子,找到综合条件
//对特殊点进行赋值
//找到终止条件
//非常经典的递推题目
long long xb,yb;// 终点坐标
long long xh,yh;//马的坐标
long long pand[30][30]={0},f[30][30]={0};
//pand为矩阵,里面pand=1时f=0表示不能走,f=1表示可以走
//f则表示矩阵中对应的点的路数,存储路径值
int main(){
//输入
cin>>xb>>yb>>xh>>yh;
//加一个保护层,把数向下向右平移一下
xb += 2;yb += 2;
xh += 2;
yh += 2;
//边界进行赋值
for(int i=2;i<30;i++){
f[2][i]=1;
f[i][2]=1;
}
//马对应的特殊点进行赋值
pand[xh][yh] = 1;
pand[xh-2][yh-1]=1;
pand[xh-2][yh+1]=1;
pand[xh-1][yh-2]=1;
pand[xh-1][yh+2]=1;
pand[xh+1][yh-2]=1;
pand[xh+1][yh+2]=1;
pand[xh+2][yh-1]=1;
pand[xh+2][yh+1]=1;
//递推的计算f(x,y)
//将第一个点的上面或者左边的值设为1
f[1][2]=1;//表示能走
for(long long i=2;i<=xb;i++){
for(long long j=2;j<=yb;j++){
if(pand[i][j]==1){
f[i][j]=0;
continue;
//不能走的可以直接跳过
}
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
//输出
cout<<f[xb][yb]<<endl;
//每个点的数量是由上面那个数和左边的数的相加而得到的
// 判断马跳 的位置是否出界,我们可以在矩阵外面加几行保护层
//保护层的点全部赋值为0,多开两行,两列,防止数组越界
return 0;
}
这里是红糖,记录我的小白进化史。
希望能帮到你们,创作不易,如果觉得有帮助可以为我点个赞!!