java实现Dijkstra算法

本文介绍了Dijkstra算法,用于找到加权连通图中起点到所有其他顶点的最短路径。通过贪心法思想,进行多次查找,每次选择未遍历顶点中离起点最近的一个。文章提供了一个具体的编码示例,讨论了算法的时间复杂度,并提醒读者注意Dijkstra算法不适用于含有负权值的图,以及与Prim算法的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 问题描述
何为Dijkstra算法?

Dijkstra算法功能:给出加权连通图中一个顶点,称之为起点,找出起点到其它所有顶点之间的最短距离。

Dijkstra算法思想:采用贪心法思想,进行n-1次查找(PS:n为加权连通图的顶点总个数,除去起点,则剩下n-1个顶点),第一次进行查找,找出距离起点最近的一个顶点,标记为已遍历;下一次进行查找时,从未被遍历中的顶点寻找距离起点最近的一个顶点, 标记为已遍历;直到n-1次查找完毕,结束查找,返回最终结果。

2 解决方案
2.1 使用Dijkstra算法得到最短距离示例

此处借用文末参考资料1博客中一个插图(PS:个人感觉此图描述简单易懂):

在这里插入图片描述

在这里插入图片描述

2.2 具体编码
Dijkstra复杂度是O(N^2),如果用binary heap优化可以达到O((E+N)logN),用fibonacci heap可以优化到O(NlogN+E) 。

注意,Dijkstra算法只能应用于不含负权值的图。因为在大多数应用中这个条件都满足,所以这种局限性并没有影响Dijkstra算法的广泛应用。

其次,大家要注意把Dijkstra算法与寻找最小生成树的Prim算法区分开来。两者都是运行贪心法思想,但是Dijkstra算法是比较路径的长度,所以必须把起点到相应顶点之间的边的权重相加,而Prim算法则是直接比较相应边给定的权重。

下面的代码时间复杂度为O(N^2),代码中所用图为2.1使用Dijkstra算法得到最短距离示例中所给的图。


                
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值