基于 Transformer-BiGRU GlobalAttention-CrossAttention 的并行预测模型

1 背景与动机

在高频、多尺度且非平稳的时序场景(如新能源产能预测、金融行情、用户行为流分析)中,单一网络分支 往往难以同时捕获

  • 长程依赖(Transformer 长距离建模优势)

  • 局部细粒信息(循环网络对短期波动敏感)

Transformer双向 GRU(BiGRU)并行支路组合,并引入

  1. Global Attention —— 强化对全局趋势的重要性重加权

  2. Cross Attention —— 显式对齐两条特征序列、互补信息

可在不显著增加推理时延的前提下,提高复杂时序任务的精度与鲁棒性。


2 模型整体框架


组件 作用 关键超参
Tr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值