paddle 52 在paddleseg中实现cutmix数据增强方式

本文介绍了如何在PaddleSeg中添加并使用CutMix数据增强技术,详细阐述了PaddleSeg的transforms机制,并提供了修改和测试CutMix的步骤。通过对数据配置文件的修改,实现了CutMix在遥感影像语义分割中的应用,以提升模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CutMix是一种极其有效的数据增强方式,尤其是在遥感影像语义分割中。这主要是因为遥感影像标注成本较大,在实际业务中通常都是采用局部标注的方式进行标注,如下图所示仅对标注成本较小的区域进行标注,而对标注成本较大的地方进行忽略。这使得标签数据中各种类别边界较少(例如:类别A和类别B都是孤立标注,对于类别A与B的边界没有语义标注),使模型在训练过程中很难准确的的区分类别A与B的边界。这则需要使用CutMix方法将多个图片及其标签进行混合,人为的在标签图片上生成各种类别的边界标注。
在这里插入图片描述
CutMix数据增强的跟多介绍可以参考,https://blog.csdn.net/a486259/article/details/123580142。下面是Mixup、CutMix、CutOut三种数据增强方式的对比效果,可以看到CutMix增强方式对于模型训练效果是最佳的。
在这里插入图片描述

1、paddleseg中transforms介绍

transforms是paddleseg中增强数据的配置,首先我们可以在其数据配置文件中看到transforms设置项,具体如下所示。可以看到transforms中设置了Resize、ResizeStepScaling、RandomV

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值