
deepseek
文章平均质量分 60
无极低码
多行业解决方案架构师,全栈开发
0行代码写服务低代码平台创始人
寻求商务合作
可提供商业软件研发,大模型智能体开发,企业培训,解决方案咨询,需求,方案,设计,编码,验收等项目的周期全过程,设计包括数据库设计,架构设计,原型设计,数据安全等,前端原生APP编码开发,web版移动端开发,微信开发,pc端管理系统开发,涉及技术点包括,数据采集爬取,缓存应用,语音识别与语音合成,Gis开发,大数据可视化,地图导航类,移动办公,电力巡航,天气服务等多个领域,涉及交通,应急,地震,政务,旅游,教育、政务多个行业,可以为企业提供完整的技术输出与技术方案
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何设计表结构以提高向量检索召回率
本文提出了向量库表结构设计方案,旨在提升检索召回率。核心包含文档内容表、向量数据表和可选文本分块表,支持存储原文、向量及分块信息。建议添加哈希索引、时间索引和IVFFlat/HNSW向量索引优化查询性能。扩展方案包括查询日志和模型版本表。实施建议强调分块处理、维度适配、索引选择、同步更新和内容去重机制。该设计为构建高效向量检索系统提供了完整的技术框架。原创 2025-05-27 09:20:49 · 368 阅读 · 0 评论 -
MCP调用示例说明,以百度地图为例
MCP服务服务端是由服务商提供好的调用代码,比如百度地图路线规划,原来是百度提供了接口,由开发人员自己写代码调用,现在通过本地部署百度提供的mcp服务,只需关系输入参数即可,服务调用由mcp服务端自己调用直接返回结果给mcp客户端。通过 MCP 协议,服务商可以提供预配置的 MCP 服务端,使得开发者可以更方便地调用其服务。原创 2025-04-18 11:34:35 · 673 阅读 · 0 评论 -
要不要使用mcp服务
比如我要做一个agent,可能会用到文件解析,长文本分词,向量化处理,语义化检索,数据库查询语句生成,图表生成,结果分析等。原创 2025-04-18 11:18:39 · 393 阅读 · 0 评论 -
【完整代码实战教程RAG增强+embedding=deeps】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能问答
【完整代码实战教程】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能问答。文本向量化: 使用 all-MiniLM-L6-v2 模型将文本转换为向量。DeepSeek 模型调用: 调用 DeepSeek API 进行文本生成。前端展示: 使用 HTML 和 JavaScript 实现交互式前端界面。完整代码实现: 从文本向量化到前端展示的完整代码实战。技术深度解析: 详细讲解每个技术点的原理和实现细节。原创 2025-03-08 11:18:27 · 227 阅读 · 0 评论 -
libjemalloc安装
是一个高性能的内存分配器,特别适用于多线程应用程序。它旨在减少内存碎片并提升高并发场景下的内存分配效率。 最初由 Jason Evans 为 FreeBSD 开发,后来被广泛应用于多种应用程序和编程语言中,例如 Firefox、Redis、Rust 等。你可以从 的官方 GitHub 仓库下载源代码:或者,你可以直接下载特定版本的源代码包,例如:国内下载地址如果你在国内,可以使用 Gitee 的镜像仓库,该仓库每日同步一次:安装 在 Ubuntu/Debian 上安装你可以通过包管理器安装 :原创 2025-03-05 14:00:49 · 368 阅读 · 0 评论 -
Milvus安装linux操作步骤
文件,添加以下内容,以指定数据持久化路径为。这将停止并删除 Milvus 容器及其相关卷。通过以上步骤,您可以将 Milvus 安装在。如果您希望将 Milvus 安装在。目录下,并确保数据存储在指定路径。原创 2025-03-04 10:11:26 · 714 阅读 · 0 评论 -
SentenceTransformer` 模型的完整过程步骤,包括安装依赖、加载模型、编码文本、计算相似度、以及实际应用示例
以下是使用模型的完整过程步骤,包括安装依赖、加载模型、编码文本、计算相似度、以及实际应用示例。原创 2025-03-03 14:40:42 · 1034 阅读 · 0 评论 -
安装 Milvus 的详细步骤
通过以上步骤,你可以成功重新安装 Milvus。如果在安装过程中遇到任何问题,请告诉我具体的错误信息,我会进一步协助你。原创 2025-02-28 15:47:35 · 1524 阅读 · 0 评论 -
推理模型和非推理模型的特点和优势
非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像推理模型那样复杂的推理和决策能力。推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。优势领域:这类模型经过专门训练,能够处理复杂的逻辑推理任务,例如数学问题、代码生成和复杂问题的拆解。劣势领域:在需要严格逻辑链的任务上表现较弱,例如数学证明或复杂的逻辑推理。原创 2025-02-09 11:02:25 · 2844 阅读 · 0 评论 -
Deepseek可以做什么?
提供实时信息(需联网时)或基于知识库的深度解析。翻译多语言内容,调整文本风格(正式/口语化)。调试错误、优化代码逻辑,提供算法思路。生成流程图、思维导图,辅助项目管理。辅助数据清洗、统计分析或简单建模。设计学习计划,生成练习题及解析。原创 2025-02-09 10:50:43 · 2389 阅读 · 0 评论 -
什么是deepseek?
其中智能分析引擎采用了先进的机器学习算法和深度学习模型,能够自动识别数据中的模式和趋势,进行复杂的关联分析和预测建模。这种开源策略降低了中小企业和个人开发者的使用成本,推动了 AI 技术的普及和应用。•混合专家模型(MoE):通过训练多个专家模型,并根据输入数据特征动态选择最合适的专家模型进行处理,实现对复杂任务的高效处理。•深度学习与自然语言处理:通过大量数据训练,能够理解和处理复杂问题,提供个性化建议。•多头潜在注意力机制(MLA):显著降低了模型推理成本,提高了模型的运行效率。原创 2025-02-09 10:21:39 · 583 阅读 · 0 评论