良序原理:算术基本定理的证明

本文介绍了良序原理及其在证明算术基本定理中的应用。通过反证法展示如何利用良序原理证明每个大于1的自然数可唯一写成质数的乘积。此外,讨论了良序集合在计算机科学中用于证明程序可终止性的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


相关:
第一数学归纳法 vs 第二数学归纳法 vs 良序定理

第二数学归纳法:硬币问题和堆垛游戏

第一数学归纳法:施塔特中心的地板砖

良序原理:算术基本定理的证明



任何非空的非负整数集合都有一个最小的元素。


首先不要把良序原理(Well-ordering principle)和良序定理(Well-ordering theorem)混淆了。良序原理的关键点在于非空和非负整数——空的集合没有元素; 包含负数或者正有理数的集合也可能没有最小数。虽然看起来很简单,但它是离散数学里最重要的原理之一。

良序原理的使用方法一般都相似。例如,我们要证明对于所有的属于N集合的元素n,P(n)都成立:

  1. 设存在集合C,C中的元素为P的反面例子,也就是说,C ::= {n belongs to N | NOT(P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值