任何非空的非负整数集合都有一个最小的元素。
首先不要把良序原理(Well-ordering principle)和良序定理(Well-ordering theorem)混淆了。良序原理的关键点在于非空和非负整数——空的集合没有元素; 包含负数或者正有理数的集合也可能没有最小数。虽然看起来很简单,但它是离散数学里最重要的原理之一。
良序原理的使用方法一般都相似。例如,我们要证明对于所有的属于N集合的元素n,P(n)都成立:
- 设存在集合C,C中的元素为P的反面例子,也就是说,C ::= {n belongs to N | NOT(P