python 绘制 频谱图

本文介绍了一种使用numpy和pywt库进行信号分析的方法,通过计算一通道信号的连续小波变换(cwt),展示了时间-频率域的可视化。重点在于如何使用cwt来提取信号特征并解读频谱信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果图

t = np.arange(0,time,1.0/sampling_rate)
wavename = 'morl'    # "cmorB-C" where B is the bandwidth and C is the center frequency.
totalscal = 64    # scale 
fc = pywt.central_frequency(wavename) #  central frequency
cparam = 2 * fc * totalscal
scales = cparam/np.arange(1,totalscal+1)

[cwtmatr_l, frequencies_l] = pywt.cwt(data,scales,wavename,1.0/sampling_rate) # continuous wavelet transform

    
plt.figure(figsize=(8, 4))
plt.contourf(t, frequencies_l, abs(cwtmatr_l),cmap='jet', levels=np.linspace(0,50,100),extend='both')
plt.ylabel(u"freq(Hz)")
plt.xlabel(u"time(s)")
plt.colorbar()

 其中,data是一个通道的信号数据,sample_rate是采样率,需要导入pywt包。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值