『大模型笔记』大型语言模型(LLMs)微调(Fine-tuning)优化研究!

本文详述了大语言模型微调优化技术,如梯度检查点、低秩适配(LoRA)、DeepSpeed的ZeRO优化和Flash Attention。研究发现,这些技术能有效减少GPU内存需求和运行时间,尤其在处理大型模型时。通过合理组合,可在保持性能的同时,实现大模型的高效微调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大型语言模型(LLMs)微调(Fine-tuning)优化研究!

一. 摘要

  • 微调大语言模型是用户用于特定应用的常见选择。然而,微调这些模型是一项艰巨的任务,因为用户必须考虑 资源预算、运行时间、模型大小和上下文长度 等多个因素。一个主要的挑战是微调对内存需求很高,限制了所需硬件内存和可以处理的训练数据上下文长度。在这项工作中,我们对各种微调优化方案进行了详细研究并分享了结果。特别是,我们评估了 梯度检查点(Gradient Checkpointing)、低秩适配(Low Rank Adaptation)、DeepSpeed的零冗余优化器(ZeRO Redundancy Optimizer)和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值